3 research outputs found

    Alternative methylation of intron motifs is associated with cancer-related gene expression in both canine mammary tumor and human breast cancer

    Get PDF
    Abstract Background Canine mammary tumor (CMT) has long been considered as a good animal model for human breast cancer (HBC) due to their pathological and biological similarities. However, only a few aspects of the epigenome have been explored in both HBC and CMT. Moreover, DNA methylation studies have mainly been limited to the promoter regions of genes. Results Genome-wide methylation analysis was performed in CMT and adjacent normal tissues and focused on the intron regions as potential targets for epigenetic regulation. As expected, many tumor suppressors and oncogenes were identified. Of note, most cancer-associated biological processes were enriched in differentially methylated genes (DMGs) that included intron DMRs (differentially methylated regions). Interestingly, two PAX motifs, PAX5 (tumor suppressive) and PAX6 (oncogenic), were frequently found in hyper- and hypomethylated intron DMRs, respectively. Hypermethylation at the PAX5 motifs in the intron regions of CDH5 and LRIG1 genes were found to be anti-correlated with gene expression, while CDH2 and ADAM19 genes harboring hypomethylated PAX6 motifs in their intron region were upregulated. These results were validated from the specimens originally MBD-sequenced as well as additional clinical samples. We also comparatively investigated the intron methylation and downstream gene expression of these genes using human breast invasive carcinoma (BRCA) datasets in TCGA (The Cancer Genome Atlas) public database. Regional alteration of methylation was conserved in the corresponding intron regions and, consequently, gene expression was also altered in HBC. Conclusions This study provides good evidence for the conservation of epigenetic regulation in CMT and HBC, and suggests that intronic methylation can be an important factor in better understanding gene regulation in both CMT and HBC

    A non-genetic switch triggers alternative telomere lengthening and cellular immortalization in ATRX deficient cells

    Get PDF
    Alternative Lengthening of Telomeres (ALT) is an aberrant DNA recombination pathway which grants replicative immortality to approximately 10% of all cancers. Despite this high prevalence of ALT in cancer, the mechanism and genetics by which cells activate this pathway remain incompletely understood. A major challenge in dissecting the events that initiate ALT is the extremely low frequency of ALT induction in human cell systems. Guided by the genetic lesions that have been associated with ALT from cancer sequencing studies, we genetically engineered primary human pluripotent stem cells to deterministically induce ALT upon differentiation. Using this genetically defined system, we demonstrate that disruption of the p53 and Rb pathways in combination with ATRX loss-of-function is sufficient to induce all hallmarks of ALT and results in functional immortalization in a cell type-specific manner. We further demonstrate that ALT can be induced in the presence of telomerase, is neither dependent on telomere shortening nor crisis, but is rather driven by continuous telomere instability triggered by the induction of differentiation in ATRX-deficient stem cells
    corecore