30 research outputs found
Pairing Fluctuation Theory of Superconducting Properties in Underdoped to Overdoped Cuprates
We propose a theoretical description of the superconducting state of under-
to overdoped cuprates, based on the short coherence length of these materials
and the associated strong pairing fluctuations. The calculated and the
zero temperature excitation gap , as a function of hole
concentration , are in semi-quantitative agreement with experiment. Although
the ratio has a strong dependence, different from the
universal BCS value, and deviates significantly from the BCS
prediction, we obtain, quite remarkably, quasi-universal behavior, for the
normalized superfluid density and the Josephson critical
current , as a function of . While experiments on
are consistent with these results, future measurements on
are needed to test this prediction.Comment: 4 pages, 3 figures, REVTeX, submitted to Phys. Rev. Let
The interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons
We have studied the interaction of polyaromatic hydrocarbons (PAHs) with the
basal plane of graphite using thermal desorption spectroscopy. Desorption
kinetics of benzene, naphthalene, coronene and ovalene at sub-monolayer
coverages yield activation energies of 0.50 eV, 0.85 eV, 1.40 eV and 2.1 eV,
respectively. Benzene and naphthalene follow simple first order desorption
kinetics while coronene and ovalene exhibit fractional order kinetics owing to
the stability of 2-D adsorbate islands up to the desorption temperature.
Pre-exponential frequency factors are found to be in the range
- as obtained from both Falconer--Madix (isothermal
desorption) analysis and Antoine's fit to vapour pressure data. The resulting
binding energy per carbon atom of the PAH is 5 meV and can be identified
with the interlayer cohesive energy of graphite. The resulting cleavage energy
of graphite is ~meV/atom which is considerably larger than previously
reported experimental values.Comment: 8 pages, 4 figures, 2 table
Low-Energy Quasiparticles in Cuprate Superconductors: A Quantitative Analysis
A residual linear term is observed in the thermal conductivity of
optimally-doped Bi-2212 at very low temperatures whose magnitude is in
excellent agreement with the value expected from Fermi-liquid theory and the
d-wave energy spectrum measured by photoemission spectroscopy, with no
adjustable parameters. This solid basis allows us to make a quantitative
analysis of thermodynamic properties at low temperature and establish that
thermally-excited quasiparticles are a significant, perhaps even the dominant
mechanism in suppressing the superfluid density in cuprate superconductors
Bi-2212 and YBCO.Comment: Revised version with additional page, figure, table and reference; to
appear in Physical Review B (1 August 2000
Angle-resolved photoemission in doped charge-transfer Mott insulators
A theory of angle-resolved photoemission (ARPES) in doped cuprates and other
charge-transfer Mott insulators is developed taking into account the realistic
(LDA+U) band structure, (bi)polaron formation due to the strong electron-phonon
interaction, and a random field potential. In most of these materials the first
band to be doped is the oxygen band inside the Mott-Hubbard gap. We derive the
coherent part of the ARPES spectra with the oxygen hole spectral function
calculated in the non-crossing (ladder) approximation and with the exact
spectral function of a one-dimensional hole in a random potential. Some unusual
features of ARPES including the polarisation dependence and spectral shape in
YBa2Cu3O7 and YBa2Cu4O8 are described without any Fermi-surface, large or
small. The theory is compatible with the doping dependence of kinetic and
thermodynamic properties of cuprates as well as with the d-wave symmetry of the
superconducting order parameter.Comment: 8 pages (RevTeX), 10 figures, submitted to Phys. Rev.
Renormalized mean-field theory of the neutron scattering in cuprate superconductors
The magnetic excitation spectrum of the t-t'-J-model is studied in mean-field
theory and compared to inelastic neutron-scattering (INS) experiments on YBCO
and BSCCO superconductors. Within the slave-particle formulation the dynamical
spin response is calculated from a renormalized Fermi liquid with an effective
interaction ~J in the magnetic particle--hole channel. We obtain the so-called
41meV resonance at wave vector (pi,pi) as a collective spin-1 excitation in the
d-wave superconducting state. It appears sharp (undamped), if the underlying
Fermi surface is hole-like with a sufficient next-nearest-neighbor hopping
t'<0. The double-layer structure of YBCO or BSCCO is not important for the
resonance to form. The resonance energy \omega_{res} and spectral weight at
optimal doping come out comparable to experiment. The observed qualitative
behavior of \omega_{res} with hole filling is reproduced in the underdoped as
well as overdoped regime. A second, much broader peak becomes visible in the
magnetic excitation spectrum if the 2D wave-vector is integrated over. It is
caused by excitations across the maximum gap, and in contrast to the resonance
its energy is almost independent of doping. At energies above or below
\omega_{res} the commensurate resonance splits into incommensurate peaks,
located off (pi,pi). Below \omega_{res} the intensity pattern is of `parallel'
type and the dispersion relation of incommensurate peaks has a negative
curvature. This is in accordance with recent INS experiments on YBCO.Comment: 17pp including 14 figure