36 research outputs found

    Management of EPICS IOCs in a Distributed Network Environment Using Salt

    Get PDF
    An EPICS-based control system typically consists of many individual IOCs, which can be distributed across many computers in a network. Managing hundreds of deployed IOCs, keeping track of where they are running, and providing operators with basic interaction capabilities can easily become a maintenance nightmare. At the Institute for Beam Physics and Technology (IBPT) of the Karlsruhe Institute of Technology (KIT), we operate separate networks for our accelerators KARA and FLUTE and use the Salt Project to manage the IT infrastructure. Custom Salt states take care of deploying our IOCs across multiple servers directly from the code repositories, integrating them into the host operating system and monitoring infrastructure. In addition, this allows the integration into our GUI in order to enable operators to monitor and control the process for each IOC without requiring any specific knowledge of where and how that IOC is deployed. Therefore, we can maintain and scale to any number of IOCs on any numbers of hosts nearly effortless. This paper presents the design of this system, discusses the tools and overall setup required to make it work, and shows off the integration into our GUI and monitoring systems

    Design and Commissioning of a Magnetic Field Scanning System for SRF Cavities

    Get PDF
    Trapped magnetic vortices are one of the leading sources of residual losses in SRF cavities. Mechanisms of flux pinning depend on the materials treatment and cool-down conditions. A magnetic field scanning system using flux-gate magnetometers and Hall probes has been designed and built to allow measuring the local magnetic field of trapped vortices normal to the outer surface of 1.3 GHz single-cell SRF cavities at cryogenic temperatures. Such system will allow inferring the key information about the distribution and magnitude of trapped flux in the SRF cavities for different material, surface preparations and cool-down conditions

    EIC 197 MHz Crab Cavity RF Optimization

    Get PDF
    Crab cavities, operating at 197 MHz and 394 MHz respectively, will be used to compensate the loss of luminosity due to a 25 mrad crossing angle at the interaction point in the Electron Ion Collider (EIC). Both crab cavities are of the RF Dipole (RFD) shape. To meet the machine design requirements, there are a few important cavity design considerations that need to be addressed. First, to achieve stable cavity operation at the design voltages, cavity geometry details must be optimized to suppress potential multipacting. Incorporating strong HOM damping in the cavity design is required for the beam stability and quality. Furthermore, due to the finite pole width, the multipole fields, especially the sextupole and the decapole terms, need to be minimized to maintain an acceptable beam dynamic aperture. This paper will present the RF optimization details of the 197 MHz cavity

    Development of SRF Cavity Tuners for CERN

    Get PDF
    Superconducting RF cavity developments are currently on-going for new accelerator projects at CERN such as HIE ISOLDE and HL-LHC. Mechanical RF tuning systems are required to compensate cavity frequency shifts of the cavities due to temperature, mechanical, pressure and RF effects on the cavity geometry. A rich history and experience is available for such mechanical tuners developed for existing RF cavities. Design constraints in the context of HIE ISOLDE and HL-LHC such as required resolution, space limitation, reliability and maintainability have led to new concepts in the tuning mechanisms. This paper will discuss such new approaches, their performances and planned developments

    Commissioning Plan of the IFMIF-DONES Accelerator

    Get PDF
    IFMIF-DONES (International Fusion Materials Irradiation Facility- DEMO-Oriented Neutron Early Source) - a powerful neutron irradiation facility for studies and certification of materials to be used in fusion reactors - is planned as part of the European roadmap to fusion electricity. Its main goal will be to characterize and to qualify materials under irradiation in a neutron field similar to the one faced in a fusion reactor. The intense neutron source is produced by impinging deuterons, from high-power linear deuteron accelerator, on a liquid lithium curtain. The facility has accomplished the preliminary design phase and is currently in its detailed design phase. At the present stage, it is important to have a clear understanding of how the commissioning of the facility will be performed, especially the commissioning of a 5 MW CW deuteron beam, together with the lithium curtain and the beam optimization for the neutron irradiation. In this contribution, the present plans for the hardware and beam commissioning of the accelerator will be given, focusing on the most critical aspects of the tiered approach and on the integration of the procedure with the lithium and tests systems
    corecore