943 research outputs found

    Superposition in nonlinear wave and evolution equations

    Full text link
    Real and bounded elliptic solutions suitable for applying the Khare-Sukhatme superposition procedure are presented and used to generate superposition solutions of the generalized modified Kadomtsev-Petviashvili equation (gmKPE) and the nonlinear cubic-quintic Schroedinger equation (NLCQSE).Comment: submitted to International Journal of Theoretical Physics, 23 pages, 2 figures, style change

    Excision for simplicial sheaves on the Stein site and Gromov's Oka principle

    Full text link
    A complex manifold XX satisfies the Oka-Grauert property if the inclusion \Cal O(S,X) \hookrightarrow \Cal C(S,X) is a weak equivalence for every Stein manifold SS, where the spaces of holomorphic and continuous maps from SS to XX are given the compact-open topology. Gromov's Oka principle states that if XX has a spray, then it has the Oka-Grauert property. The purpose of this paper is to investigate the Oka-Grauert property using homotopical algebra. We embed the category of complex manifolds into the model category of simplicial sheaves on the site of Stein manifolds. Our main result is that the Oka-Grauert property is equivalent to XX representing a finite homotopy sheaf on the Stein site. This expresses the Oka-Grauert property in purely holomorphic terms, without reference to continuous maps.Comment: Version 3 contains a few very minor improvement

    Random perfect lattices and the sphere packing problem

    Full text link
    Motivated by the search for best lattice sphere packings in Euclidean spaces of large dimensions we study randomly generated perfect lattices in moderately large dimensions (up to d=19 included). Perfect lattices are relevant in the solution of the problem of lattice sphere packing, because the best lattice packing is a perfect lattice and because they can be generated easily by an algorithm. Their number however grows super-exponentially with the dimension so to get an idea of their properties we propose to study a randomized version of the algorithm and to define a random ensemble with an effective temperature in a way reminiscent of a Monte-Carlo simulation. We therefore study the distribution of packing fractions and kissing numbers of these ensembles and show how as the temperature is decreased the best know packers are easily recovered. We find that, even at infinite temperature, the typical perfect lattices are considerably denser than known families (like A_d and D_d) and we propose two hypotheses between which we cannot distinguish in this paper: one in which they improve Minkowsky's bound phi\sim 2^{-(0.84+-0.06) d}, and a competitor, in which their packing fraction decreases super-exponentially, namely phi\sim d^{-a d} but with a very small coefficient a=0.06+-0.04. We also find properties of the random walk which are suggestive of a glassy system already for moderately small dimensions. We also analyze local structure of network of perfect lattices conjecturing that this is a scale-free network in all dimensions with constant scaling exponent 2.6+-0.1.Comment: 19 pages, 22 figure

    Study of the 12C+12C fusion reactions near the Gamow energy

    Get PDF
    The fusion reactions 12C(12C,a)20Ne and 12C(12C,p)23Na have been studied from E = 2.10 to 4.75 MeV by gamma-ray spectroscopy using a C target with ultra-low hydrogen contamination. The deduced astrophysical S(E)* factor exhibits new resonances at E <= 3.0 MeV, in particular a strong resonance at E = 2.14 MeV, which lies at the high-energy tail of the Gamow peak. The resonance increases the present non-resonant reaction rate of the alpha channel by a factor of 5 near T = 8x10^8 K. Due to the resonance structure, extrapolation to the Gamow energy E_G = 1.5 MeV is quite uncertain. An experimental approach based on an underground accelerator placed in a salt mine in combination with a high efficiency detection setup could provide data over the full E_G energy range.Comment: 4 Pages, 4 figures, accepted for publication in Phys. Rev. Let

    An interpolation theorem for proper holomorphic embeddings

    Full text link
    Given a Stein manifold X of dimension n>1, a discrete sequence a_j in X, and a discrete sequence b_j in C^m where m > [3n/2], there exists a proper holomorphic embedding of X into C^m which sends a_j to b_j for every j=1,2,.... This is the interpolation version of the embedding theorem due to Eliashberg, Gromov and Schurmann. The dimension m cannot be lowered in general due to an example of Forster

    Grothendieck groups and a categorification of additive invariants

    Full text link
    A topologically-invariant and additive homology class is mostly not a natural transformation as it is. In this paper we discuss turning such a homology class into a natural transformation; i.e., a "categorification" of it. In a general categorical set-up we introduce a generalized relative Grothendieck group from a cospan of functors of categories and also consider a categorification of additive invariants on objects. As an example, we obtain a general theory of characteristic homology classes of singular varieties.Comment: 27 pages, to appear in International J. Mathematic
    corecore