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We report the use of MeV ion-irradiation-induced plastic deformation of amorphous 

materials to fabricate electrodes with nanometer-sized gaps. Plastic deformation of the 

amorphous metal Pd80Si20 is induced by 4.64 MeV O2+ ion irradiation, allowing the complete 

closing of a sub-micrometer gap. We measure the evolving gap size in situ by monitoring the 

field emission current-voltage (I-V) characteristics between electrodes. The I-V behavior is 

consistent with Fowler-Nordheim tunneling. We show that using feedback control on this 

signal permits gap size fabrication with atomic-scale precision.  We expect this approach to 

nanogap fabrication will enable the practical realization of single molecule controlled devices 

and sensors. 
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In nanostructure fabrication, it is often a challenge to precisely control and characterize 

critical dimensions, such as the size of a gap between two metallic electrodes. Such a structure is 

fundamental for nanoscale electronic devices, including those with small molecules in the gap 

that may become essential components of future devices, and long molecules such as DNA that 

may lend themselves to extremely rapid sequencing through their electrical signals1. A variety of 

methods has been used for the fabrication of electrodes with a nanometer-sized gap: mechanical 

break junctions2, electron-beam deposition3, oblique evaporation through a lift-off mask4, 

electrochemical deposition5,6, electromigration7, electron-beam lithography8,9, and focused-ion-

beam lithography10. With some of these methods, the gap has been controlled by measuring the 

electrical properties of electrodes in situ2, 4-6. 

Amorphous materials, such as SiO2 or Pd80Si20, are known to be deformed plastically by 

MeV ion irradiation11-14. The electronic energy loss of the incoming MeV ions causes an 

anisotropic deformation consisting of an increase in the sample dimensions perpendicular to the 

ion beam and a decrease in the dimension parallel to the ion beam15. Induced strains accumulate 

with increasing ion beam fluence and can exceed unity, causing microns of dimensional changes. 

Hence, the phenomenon can be used for precise nanostructure fabrication if in situ feedback 

control can be implemented based on some physical quantity such as a tunneling current 

reflecting a critical dimension. 

In this Letter, we demonstrate that we can fabricate amorphous metallic Pd80Si20 

electrodes with a nanometer-sized gap by using MeV oxygen ion irradiation-induced plastic 
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deformation. We also demonstrate that the gap size can be controlled with nanometer precision 

by in situ feedback control using the field-emission current between the electrodes.  

We prepared a layered Pd80Si20/SiO2/Si structure with an H-shaped trench, as shown in 

Fig. 1. A 500 nm thick SiO2 layer was grown by thermal oxidation of a Si substrate and then a 

200 nm-thick Pd80Si20 film was deposited by Ar+ ion beam sputtering from a target of the same 

composition. The H-shaped trench was micromachined using a 50 keV Ga+ beam from a Micrion 

9500 Focused Ion Beam instrument. The trench width was ~800 nm. The milled depth was ~1.1 

μm, so that the lower part of the side walls visible in Fig. 1(a) corresponds to the silicon substrate. 

Irradiation at normal incidence with 4.64 MeV O2+ ions was performed either at room 

temperature (RT) or at liquid nitrogen temperature (~80 K) with the use of a General Ionex 1.7 

MV tandem accelerator. The beam spot was 1 mm in diameter and the beam current was 

typically ~6 nA. The pressure in the irradiation chamber was roughly 10-5 Pa. The energy of the 

incident oxygen ions was high enough to allow the ions to penetrate through the Pd80Si20/SiO2 

bilayer and come to rest within the Si substrate16. Every sample was characterized before and 

after irradiation by using scanning electron microscopy (SEM). Moreover, the cross section of 

some samples was studied with atomic force microscopy (AFM).  

Figure 1(b) shows an SEM image of the sample irradiated with 1×1016 ions/cm2 at RT. 

Plastic deformation due to the ion irradiation was observed in both Pd80Si20 and SiO2 layers. The 

walls surrounding the gap deform into the gap in all directions. The SiO2 walls become 

especially quite rounded and are almost in contact, indicating that the SiO2 deformation rate is 

larger than that of Pd80Si20 under these conditions. We observed no dimensional modification to 
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the crystalline silicon substrate from this treatment. From SEM images, we evaluated and 

compared the relative width change of the gap of Pd80Si20 and SiO2 in the bilayered structure as a 

function of the irradiation fluence. Figure 2 shows a comparison of the width changes for 

irradiations at RT and 80 K. At RT and 80 K, SiO2 deforms almost three times and about two 

times as much, respectively, as does Pd80Si20. In all cases, the gap width decreases almost 

linearly with ion fluence. Moreover, low temperature irradiation induces more significant 

deformations of Pd80Si20 and SiO2 compared with those obtained at RT. We have previously 

demonstrated that this kind of deformation does not occur in the case of a crystalline pure metal 

(Al, Au) on top of a similar SiO2 layer17.  

From Fig. 2 it is apparent that, at least for RT irradiations, the Pd80Si20 gap width 

saturates once the SiO2 gap is closed. This result indicates that the Pd80Si20 gap closure is 

restrained by the complete closure of the underlying SiO2 gap (see Fig. 1(b)). To eliminate this 

restraint, we dipped the irradiated sample in a H2O:HF = 10:1 solution, which removed the SiO2 

underneath the Pd80Si20 gap. In Fig. 1(c) is the SEM image of the same sample from Fig. 1(b) 

after it has been etched in diluted HF for 4 minutes. The SiO2 gap is open again up to the same 

width as the silicon gap (800 nm), and the etched SiO2 gap is wider than that of the Pd80Si20 

(~500 nm), which is not affected by the etching. Next, we chose a second irradiation treatment 

under conditions expected to completely close the gap based on the data in Fig. 2: 1×1016 

ions/cm2 at 80 K. Figure 1(d) shows an SEM image of the resulting sample. Not only has the 

Pd80Si20 gap been completely closed, but also the deformation of the free-standing portion of the 

Pd80Si20 layers has been large enough to cause buckling. 
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For controlling the gap separation with nanometer precision, we prepared another type of 

sample: a layered structure of Si3N4/SiO2/Si with Pd80Si20 electrodes, as illustrated in Fig. 3(a). A 

200 nm thick Si3N4 film was grown by chemical vapor deposition on a 500 nm thick SiO2 layer 

grown by thermal oxidation of a Si wafer. A Pd80Si20 line, 100 nm thick and 3 μm wide, was 

prepared by Ar+ ion beam sputtering, photolithography and lift-off techniques. Then the line was 

cut using the FIB. In order to minimize the influence of the underlying SiO2 layer on the 

deformation of the Pd80Si20 electrodes, the SiO2 layer was etched in a buffered HF solution for 

3.5 minutes and then in a H2O:HF = 50:1 solution for 5 minutes. Figure 3(b) shows an SEM 

image of the electrodes displaying a gap of about 130 nm. 

We monitored the I-V characteristics of the pair of electrodes during O2+ irradiation at 

RT. The ion irradiation was paused between incremental ion doses while I-V behavior was 

characterized over a series of ion irradiation fluences. The results for the series are shown in Fig. 

4. Each curve shows the characteristics of field emission, and the abrupt current rise shifts to 

lower voltage with increasing ion irradiation fluence. These results indicate that the change in the 

I-V characteristics with fluence reflects a continuous shrinkage of the electrode separation with 

increasing fluence. This interpretation is confirmed by Fig. 3(c), taken after the final irradiation 

fluence in Fig. 4 and showing that the gap between the Pd80Si20 electrodes is almost completely 

closed after an irradiation with 5.65×1015 ions/cm2 at RT. Although Fig. 3(c) indicates that the 

Si3N4 layer has been deformed in addition to the Pd80Si20 layer, detailed SEM observations not 

reproduced here confirmed that the gap between the Si3N4 layers was still open after this fluence.  
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According to elementary Fowler-Nordheim theory18,19, the relation between the emission 

current I and the applied voltage V can be written in the following logarithmic form: 
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where e is the elementary positive charge, m is the electron mass, ħ is the Planck’s constant 

divided by 2π,  is the work function, S is the emission area and L is the gap. In this equation, the 

exchange-and-correlation interaction between the emitted electron and the surface is neglected 

and a simple triangular barrier (i.e., spatially uniform field near the emitter tip) is assumed. 

According to Equation 1, for field emission, a "F-N plot" of ln(I/V2) vs. 1/V should exhibit linear 

behavior. The F-N plots of our data (not reproduced here) yielded nearly straight lines.  A linear 

least-squares fit of ln(I/V2) vs. 1/V yielded parameters used to construct the (nonlinear) dashed 

curves superposed on the data in Fig. 4.  The good agreement illustrated in Fig. 4 indicates that 

the observed I-V characteristics can be attributed to field emission.  Although the three variables 

(S, L, ) appear in Equation (1) in only two combinations, (S/(L2)) and (L3/2), we identify 

unique values of all three variables as described below.  The coefficient of 1/V in Equation (1) 

depends on both L and ; however, we presume that the fluence dependence of the coefficient of 

1/V, i.e., the slope of the line in the F-N plot, reflects a change only in the gap distance because 

we presume the work function of Pd80Si20 is not changed by MeV ion irradiation (after, perhaps, 

an initial transient).  When plotted as a function of the fluence, the coefficient of 1/V in Equation 

(1) increases linearly with irradiation fluence and is almost zero at 5.65×1015 ions/cm2 (not 

shown).  This is consistent with the result shown in Fig. 2 that the gap width decreases almost 
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linearly with ion fluence, and supports our presumption.  Thus, if we once determine by any 

means a value of  at any particular value of L, we can uniquely determine the three variables (S, 

L, ) at any irradiation fluence.  We did not obtain any experimental value of L during the 

experiment reported in Fig. 4.  However, in a similar experiment with a known gap distance of 

10 nm, the I-V characteristic fit Equation (1) with  = 5.7 eV. Assuming  does not vary from 

sample to sample permits us to apply this value to the data in Fig. 4 and thereby uniquely 

determine all three parameters.  

The quantitative analysis of tunneling I-V curves permits exquisite measurement and 

control of gap dimensions.  The typical increment of irradiation fluence in the present 

experiment is 61013 ions/cm2, which corresponds to a 1.2 nm decrease in gap distance. The 

scatter in the data and the quality of the fit are sufficiently good that cutting the fluence 

increment by a factor of six, to 11013 ions/cm2, corresponding to gap changes of 0.2 nm, should 

result in distinguishable I-V curves - especially for the smallest gaps. Hence we believe that these 

results demonstrate fabrication precision at the scale of the diameter of an individual atom. 
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Figure Legends 

 

FIG. 1.  SEM images of an H-shaped structure milled in a bilayered Pd80Si20 (200 nm)/SiO2 

(500 nm)/Si sample: (a) before irradiation. (b) after irradiation with 1×1016 ions/cm2 at RT. (c) 

same as in (b) but after etching in HF for 4 minutes. (d) after etching and an additional 

irradiation with 1×1016 ions/cm2 at ~80 K. The original FIB milled depth and gap size are ~1.1 

μm and ~800 nm, respectively. The sketch at the top is a schematic cross section of the sample. 

 

FIG. 2.  Comparison of width change of each gap of SiO2 and Pd80Si20 in the bilayered 

structure as a function of ion fluence for irradiations at RT and at 80 K. The line is a guide 

for the eyes. 

 

FIG. 3.  (a) Schematic diagram of the two electrodes. SEM images of the electrodes: (b) 

before irradiation and (c) after irradiation with 5.65×1015 ions/cm2 at RT. 

 

FIG. 4.  Fluence dependence of the I-V characteristics at RT. The I-V curve measured after 

irradiation with 5.65×1015 ions/cm2 is shown in a different horizontal scale. Dashed lines are 

obtained by a least-squares fit to Equation (1). The best-fit gap distance corresponding to each I-

V curve is as follows: :0.006 nm, : 1.8 nm, : 3.0 nm, : 4.2 nm, : 5.4 nm, : 6.5 nm, 

: 8.3 nm, : 8.5 nm. 
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