3 research outputs found

    Quantum Chaos and Quantum Randomness - Paradigms of Entropy Production on the Smallest Scales

    Full text link
    Quantum chaos is presented as a paradigm of information processing by dynamical systems at the bottom of the range of phase-space scales. Starting with a brief review of classical chaos as entropy flow from micro- to macro-scales, I argue that quantum chaos came as an indispensable rectification, removing inconsistencies related to entropy in classical chaos: Bottom-up information currents require an inexhaustible entropy production and a diverging information density in phase space, reminiscent of Gibbs' paradox in Statistical Mechanics. It is shown how a mere discretization of the state space of classical models already entails phenomena similar to hallmarks of quantum chaos, and how the unitary time evolution in a closed system directly implies the ''quantum death'' of classical chaos. As complementary evidence, I discuss quantum chaos under continuous measurement. Here, the two-way exchange of information with a macroscopic apparatus opens an inexhaustible source of entropy and lifts the limitations implied by unitary quantum dynamics in closed systems. The infiltration of fresh entropy restores permanent chaotic dynamics in observed quantum systems. Could other instances of stochasticity in quantum mechanics be interpreted in a similar guise? Where observed quantum systems generate randomness, that is, produce entropy without discernible source, could it have infiltrated from the macroscopic meter? This speculation is worked out for the case of spin measurement.Comment: 41 pages, 17 figure
    corecore