111 research outputs found

    Impact splash chondrule formation during planetesimal recycling

    Full text link
    Chondrules are the dominant bulk silicate constituent of chondritic meteorites and originate from highly energetic, local processes during the first million years after the birth of the Sun. So far, an astrophysically consistent chondrule formation scenario, explaining major chemical, isotopic and textural features, remains elusive. Here, we examine the prospect of forming chondrules from planetesimal collisions. We show that intensely melted bodies with interior magma oceans became rapidly chemically equilibrated and physically differentiated. Therefore, collisional interactions among such bodies would have resulted in chondrule-like but basaltic spherules, which are not observed in the meteoritic record. This inconsistency with the expected dynamical interactions hints at an incomplete understanding of the planetary growth regime during the protoplanetary disk phase. To resolve this conundrum, we examine how the observed chemical and isotopic features of chondrules constrain the dynamical environment of accreting chondrite parent bodies by interpreting the meteoritic record as an impact-generated proxy of planetesimals that underwent repeated collision and reaccretion cycles. Using a coupled evolution-collision model we demonstrate that the vast majority of collisional debris feeding the asteroid main belt must be derived from planetesimals which were partially molten at maximum. Therefore, the precursors of chondrite parent bodies either formed primarily small, from sub-canonical aluminum-26 reservoirs, or collisional destruction mechanisms were efficient enough to shatter planetesimals before they reached the magma ocean phase. Finally, we outline the window in parameter space for which chondrule formation from planetesimal collisions can be reconciled with the meteoritic record and how our results can be used to further constrain early solar system dynamics.Comment: 20 pages, 11 figures, 2 tables; accepted for publication in Icarus; associated blog article at goo.gl/5bDqG

    Late metal-silicate separation on the IAB parent asteroid: Constraints from combined W and Pt isotopes and thermal modelling

    Full text link
    The short-lived 182^{182}Hf-182^{182}W decay system is a powerful chronometer for constraining the timing of metal-silicate separation and core formation in planetesimals and planets. Neutron capture effects on W isotopes, however, significantly hamper the application of this tool. In order to correct for neutron capture effects, Pt isotopes have emerged as a reliable in-situ neutron dosimeter. This study applies this method to IAB iron meteorites, in order to constrain the timing of metal segregation on the IAB parent body. The ϔ182\epsilon^{182}W values obtained for the IAB iron meteorites range from -3.61 ±\pm 0.10 to -2.73 ±\pm 0.09. Correlating ϔi\epsilon^{\mathrm{i}}Pt with 182^{182}W data yields a pre-neutron capture 182^{182}W of -2.90 ±\pm 0.06. This corresponds to a metal-silicate separation age of 6.0 ±\pm 0.8 Ma after CAI for the IAB parent body, and is interpreted to represent a body-wide melting event. Later, between 10 and 14 Ma after CAI, an impact led to a catastrophic break-up and subsequent reassembly of the parent body. Thermal models of the interior evolution that are consistent with these estimates suggest that the IAB parent body underwent metal-silicate separation as a result of internal heating by short-lived radionuclides and accreted at around 1.4 ±\pm 0.1 Ma after CAIs with a radius of greater than 60 km.Comment: 11 pages, 8 figures, 2 tables; open access article under the CC BY-NC-ND license (see http://creativecommons.org/licenses/by-nc-nd/4.0/

    Presolar grain dynamics: Creating nucleosynthetic variations through a combination of drag and viscous evolution

    Full text link
    Meteoritic studies of Solar system objects show evidence of nucleosynthetic heterogeneities that are inherited from small presolar grains (⁠<10Όm⁠) formed in stellar environments external to our own. The initial distribution and subsequent evolution of these grains are currently unconstrained. Using 3D, gas-dust simulations, we find that isotopic variations on the order of those observed in the Solar system can be generated and maintained by drag and viscosity. Small grains are dragged radially outwards without size/density sorting by viscous expansion and backreaction, enriching the outer disc with presolar grains. Meanwhile large aggregates composed primarily of silicates drift radially inwards due to drag, further enriching the relative portion of presolar grains in the outer disc and diluting the inner disc. The late accumulation of enriched aggregates outside Jupiter could explain some of the isotopic variations observed in Solar system bodies, such as the enrichment of supernovae derived material in carbonaceous chondrites. We also see evidence for isotopic variations in the inner disc that may hold implications for enstatite and ordinary chondrites that formed closer to the Sun. Initial heterogeneities in the presolar grain distribution that are not continuously reinforced are dispersed by diffusion, radial surface flows, and/or planetary interactions over the entire lifetime of the disc. For younger, more massive discs we expect turbulent diffusion to be even more homogenizing, suggesting that dust evolution played a more central role in forming the isotopic anomalies in the Solar system than originally thought

    The initial abundance and distribution of 92Nb in the Solar System

    Get PDF
    Niobium-92 is an extinct proton-rich nuclide, which decays to 92Zr with a half-life of 37 Ma. This radionuclide potentially offers a unique opportunity to determine the timescales of early Solar System processes and the site(s) of nucleosynthesis for p-nuclei, once its initial abundance and distribution in the Solar System are well established. Here we present internal Nb-Zr isochrons for three basaltic achondrites with known U-Pb ages: the angrite NWA 4590, the eucrite Agoult, and the ungrouped achondrite Ibitira. Our results show that the relative Nb-Zr isochron ages of the three meteorites are consistent with the time intervals obtained from the Pb-Pb chronometer for pyroxene and plagioclase, indicating that 92Nb was homogeneously distributed among their source regions. The Nb-Zr and Pb-Pb data for NWA 4590 yield the most reliable and precise reference point for anchoring the Nb-Zr chronometer to the absolute timescale: an initial 92Nb/93Nb ratio of (1.4±0.5)×10−5(1.4 \pm 0.5) \times 10^{-5} at 4557.93±0.364557.93 \pm 0.36 Ma, which corresponds to a 92Nb/93Nb ratio of (1.7±0.6)×10−5(1.7 \pm 0.6) \times 10^{-5} at the time of the Solar System formation. On the basis of this new initial ratio, we demonstrate the capability of the Nb-Zr chronometer to date early Solar System objects including troilite and rutile, such as iron and stony-iron meteorites. Furthermore, we estimate a nucleosynthetic production ratio of 92Nb to the p-nucleus 92Mo between 0.0015 and 0.035. This production ratio, together with the solar abundances of other p-nuclei with similar masses, can be best explained if these light p-nuclei were primarily synthesized by photodisintegration reactions in Type Ia supernovae.Comment: Accepted to Earth and Planetary Science Letter

    The “central state” and the almighty Dollar

    Get PDF
    New methods to determine the titanium (Ti) mass-dependent isotope fractionation of solar system materials to high precision were developed by combining internally normalised Ti isotope data with double-spike analyses utilising a 47Ti-49Ti double spike. The procedure includes a three-stage ion-exchange separation procedure to isolate Ti from the sample matrix that provides high-purity Ti fractions that are necessary for high-precision Ti isotope analyses. Analyses of sample aliquots that were spiked before and after the ion-exchange separation procedure demonstrate that Ti isotope fractionation can be induced by the separation procedure. This outcome requires the addition of the double spike before the ion exchange separation procedure in order to accurately determine the natural mass-dependent Ti isotope fractionation of samples. Multiple double spike analyses of an Alfa Aesar Ti standard performed over eight months yielded a reproducibility (2σ standard deviation) of 0.033‰ for ÎŽ49/47Ti (differences in 49Ti/47Ti relative to the OL-Ti standard). Terrestrial sample analyses display a 2σ reproducibility of 0.018 to 0.031‰ for ÎŽ49/47Ti. Titanium isotope results for three terrestrial USGS magmatic reference samples (AGV-2, BHVO-2 and BCR-2) agree well with literature data and therefore demonstrate the accuracy and precision of the presented methodologies. Achondritic meteorites display an overall range of 0.75‰ for ÎŽ49/47Ti. The ungrouped achondrite NWA 7325 has a more positive composition by 0.64‰ for ÎŽ49/47Ti compared to all other investigated samples likely reflecting Ti isotope fractionation induced by magmatic differentiation associated with highly reducing conditions and potentially associated with oxide and plagioclase formation. In contrast, eucrites with ÎŽ49/47Ti of -0.020 ± 0.070 and -0.003 ± 0.033 and the first mass-dependent Ti isotope data for an acapulcoite (Dhofar 125; ÎŽ49/47Ti = 0.094 ± 0.033) show only limited magmatic Ti isotope fractionation. Chondrites also display a relatively restricted range of 0.085‰ for ÎŽ49/47Ti, including one calcium‑aluminum rich inclusion (CAI) from Allende and the first mass-dependent Ti isotope data for two Rumuruti chondrites (NWA 753 and NWA 755). Furthermore, the mass-dependent Ti isotope composition of chondrites overlaps with that of eucrites and the acapulcoite Dhofar 125 indicating that nebular processes induce only limited Ti isotope fractionation. Additionally, the Ti isotope data indicate that thermal metamorphism also produced marginal Ti isotope fractionation at the bulk sample scale for chondrites. Small mass-dependent Ti isotope variations between different bulk meteorite samples are also evident, which might reflect sample heterogeneity. Importantly, the mass-dependent Ti isotope composition of the Earth and Moon overlap with the composition of the investigated chondrites, eucrites and acapulcoites within the 2 standard deviation uncertainties

    Bifurcation of planetary building blocks during Solar System formation

    Full text link
    Geochemical and astronomical evidence demonstrate that planet formation occurred in two spatially and temporally separated reservoirs. The origin of this dichotomy is unknown. We use numerical models to investigate how the evolution of the solar protoplanetary disk influenced the timing of protoplanet formation and their internal evolution. Migration of the water snow line can generate two distinct bursts of planetesimal formation that sample different source regions. These reservoirs evolve in divergent geophysical modes and develop distinct volatile contents, consistent with constraints from accretion chronology, thermo-chemistry, and the mass divergence of inner and outer Solar System. Our simulations suggest that the compositional fractionation and isotopic dichotomy of the Solar System was initiated by the interplay between disk dynamics, heterogeneous accretion, and internal evolution of forming protoplanets.Comment: Published 21 January 2021; authors' version; 30 pages, 18 figures; summary available at http://bit.ly/BifurcationBlog (blog) and https://bit.ly/BifurcationVideo (video

    The formation of Jupiter by hybrid pebble-planetesimal accretion

    Get PDF
    The standard model for giant planet formation is based on the accretion of solids by a growing planetary embryo, followed by rapid gas accretion once the planet exceeds a so-called critical mass. The dominant size of the accreted solids (cm-size particles named pebbles or km to hundred km-size bodies named planetesimals) is, however, unknown. Recently, high-precision measurements of isotopes in meteorites provided evidence for the existence of two reservoirs in the early Solar System. These reservoirs remained separated from ~1 until ~ 3 Myr after the beginning of the Solar System's formation. This separation is interpreted as resulting from Jupiter growing and becoming a barrier for material transport. In this framework, Jupiter reached ~20 Earth masses within ~1 Myr and slowly grew to ~50 Earth masses in the subsequent 2 Myr before reaching its present-day mass. The evidence that Jupiter slowed down its growth after reaching 20 Earth masses for at least 2 Myr is puzzling because a planet of this mass is expected to trigger fast runaway gas accretion. Here, we use theoretical models to describe the conditions allowing for such a slow accretion and show that Jupiter grew in three distinct phases. First, rapid pebble accretion brought the major part of Jupiter's core mass. Second, slow planetesimal accretion provided the energy required to hinder runaway gas accretion during 2 Myr. Third, runaway gas accretion proceeded. Both pebbles and planetesimals therefore have an important role in Jupiter's formation.Comment: Published in Nature Astronomy on August 27, 201

    The origin of s-process isotope heterogeneity in the solar protoplanetary disk

    Get PDF
    Rocky asteroids and planets display nucleosynthetic isotope variations that are attributed to the heterogeneous distribution of stardust from different stellar sources in the solar protoplanetary disk. Here we report new high-precision palladium isotope data for six iron meteorite groups. The palladium data display smaller nucleosynthetic isotope variations than the more refractory neighbouring elements. Based on this observation, we present a model in which thermal destruction of interstellar dust in the inner Solar System results in an enrichment of s-process-dominated stardust in regions closer to the Sun. We propose that stardust is depleted in volatile elements due to incomplete condensation of these elements into dust around asymptotic giant branch stars. This led to the smaller nucleosynthetic variations for Pd reported here and the lack of such variations for more volatile elements. The smaller magnitude variations measured in heavier refractory elements suggest that material from high-metallicity asymptotic giant branch stars is the dominant source of stardust in the Solar System. These stars produce fewer heavy s-process elements (proton number Z >= 56) compared with the bulk Solar System composition
    • 

    corecore