256 research outputs found

    Shot noise of large charge quanta in superconductor/semiconductor/superconductor junctions

    Get PDF
    We have found experimentally that the noise of ballistic electron transport in a superconductor/semiconductor/superconductor junction is enhanced relative to the value given by the general relation, S_V=2eIR^2coth(eV/2kT), for two voltage regions in which this expression reduces to its thermal and shot noise limits. The noise enhancement is explained by the presence of large charge quanta, with effective charge q*=(1+2Delta/eV)e, that generate a noise spectrum S_V=2q*IR^2, as predicted in Phys. Rev. Lett. 76, 3814 (1996). These charge quanta result from multiple Andreev reflections at each junction interface, which are also responsible for the subharmonic gap structure observed in the voltage dependence of the junction's conductance.Comment: 5 pages, 5 figures, submitted to Physical Review B as a Rapid Communication. v2 author name in reference corrected. v3 added references. v4 clarifications in the text and reference added thanks to C. Urbin

    Impact of tunnel barrier strength on magnetoresistance in carbon nanotubes

    Get PDF
    We investigate magnetoresistance in spin valves involving CoPd-contacted carbon nanotubes. Both temperature and bias voltage dependence clearly indicate tunneling magnetoresistance as the origin. We show that this effect is significantly affected by the tunnel barrier strength, which appears to be one reason for the variation between devices previously detected in similar structures. Modeling the data by means of the scattering matrix approach, we find a non-trivial dependence of the magnetoresistance on the barrier strength. Furthermore, analysis of the spin precession observed in a nonlocal Hanle measurement yields a spin lifetime of τs=1.1 \tau_s = 1.1\,ns, a value comparable with those found in silicon- or graphene-based spin valve devices.Comment: 10 pages, 5 figures, 1 tabl

    Carrier relaxation in GaAs v-groove quantum wires and the effects of localization

    Get PDF
    Carrier relaxation processes have been investigated in GaAs/AlGaAs v-groove quantum wires (QWRs) with a large subband separation (46 meV). Signatures of inhibited carrier relaxation mechanisms are seen in temperature-dependent photoluminescence (PL) and photoluminescence-excitation (PLE) measurements; we observe strong emission from the first excited state of the QWR below ~50 K. This is attributed to reduced inter-subband relaxation via phonon scattering between localized states. Theoretical calculations and experimental results indicate that the pinch-off regions, which provide additional two-dimensional confinement for the QWR structure, have a blocking effect on relaxation mechanisms for certain structures within the v-groove. Time-resolved PL measurements show that efficient carrier relaxation from excited QWR states into the ground state, occurs only at temperatures > 30 K. Values for the low temperature radiative lifetimes of the ground- and first excited-state excitons have been obtained (340 ps and 160 ps respectively), and their corresponding localization lengths along the wire estimated.Comment: 9 pages, 8 figures, submitted to Phys. Rev. B Attempted to correct corrupt figure

    Spin-orbit coupling and phase-coherence in InAs nanowires

    Get PDF
    We investigated the magnetotransport of InAs nanowires grown by selective area metal-organic vapor phase epitaxy. In the temperature range between 0.5 and 30 K reproducible fluctuations in the conductance upon variation of the magnetic field or the back-gate voltage are observed, which are attributed to electron interference effects in small disordered conductors. From the correlation field of the magnetoconductance fluctuations the phase-coherence length l_phi is determined. At the lowest temperatures l_phi is found to be at least 300 nm, while for temperatures exceeding 2 K a monotonous decrease of l_phi with temperature is observed. A direct observation of the weak antilocalization effect indicating the presence of spin-orbit coupling is masked by the strong magnetoconductance fluctuations. However, by averaging the magnetoconductance over a range of gate voltages a clear peak in the magnetoconductance due to the weak antilocalization effect was resolved. By comparison of the experimental data to simulations based on a recursive two-dimensional Green's function approach a spin-orbit scattering length of approximately 70 nm was extracted, indicating the presence of strong spin-orbit coupling.Comment: 8 pages, 7 figure

    The Fano-Rashba effect

    Full text link
    We analyze the linear conductance of a semiconductor quantum wire containing a region where a local Rashba spin-orbit interaction is present. We show that Fano lineshapes appear in the conductance due to the formation of quasi bound states which interfere with the direct transmission along the wire, a mechanism that we term the Fano-Rashba effect. We obtain the numerical solution of the full Schr\"odinger equation using the quantum-transmitting-boundary method. The theoretical analysis is performed using the coupled-channel model, finding an analytical solution by ansatz. The complete numerical solution of the coupled-channel equations is also discussed, showing the validity of the ansatz approach.Comment: 5 pages, proceedings of ICN+T 2006 (Basel, Switzerland, 30/7-4/9), accepted, to appear in J. Phys.: Conf. Se

    Exfoliated hexagonal BN as gate dielectric for InSb nanowire quantum dots with improved gate hysteresis and charge noise

    Full text link
    We characterize InSb quantum dots induced by bottom finger gates within a nanowire that is grown via the vapor-liquid-solid process. The gates are separated from the nanowire by an exfoliated 35\,nm thin hexagonal BN flake. We probe the Coulomb diamonds of the gate induced quantum dot exhibiting charging energies of ∼2.5 meV\sim 2.5\,\mathrm{meV} and orbital excitation energies up to 0.3 meV0.3\,\mathrm{meV}. The gate hysteresis for sweeps covering 5 Coulomb diamonds reveals an energy hysteresis of only 60μeV60\mathrm{\mu eV} between upwards and downwards sweeps. Charge noise is studied via long-term measurements at the slope of a Coulomb peak revealing potential fluctuations of ∼1 μeV/Hz\sim 1\,\mu \mathrm{eV}/\mathrm{\sqrt{Hz}} at 1\,Hz. This makes h-BN the dielectric with the currently lowest gate hysteresis and lowest low-frequency potential fluctuations reported for low-gap III-V nanowires. The extracted values are similar to state-of-the art quantum dots within Si/SiGe and Si/SiO2{_2} systems

    Longitudinal photocurrent spectroscopy of a single GaAs/AlGaAs v-groove quantum wire

    Get PDF
    Modulation-doped GaAs v-groove quantum wires (QWRs) have been fabricated with novel electrical contacts made to two-dimensional electron-gas (2DEG) reservoirs. Here, we present longitudinal photocurrent (photoconductivity/PC) spectroscopy measurements of a single QWR. We clearly observe conductance in the ground-state one-dimensional subbands; in addition, a highly temperature-dependent response is seen from other structures within the v-groove. The latter phenomenon is attributed to the effects of structural topography and localization on carrier relaxation. The results of power-dependent PC measurements suggest that the QWR behaves as a series of weakly interacting localized states, at low temperatures

    Doppler Shift in Andreev Reflection from a Moving Superconducting Condensate in Nb/InAs Josephson Junctions

    Get PDF
    We study narrow ballistic Josephson weak links in a InAs quantum wells contacted by Nb electrodes and find a dramatic magnetic-field suppression of the Andreev reflection amplitude, which occurs even for in-plane field orientation with essentially no magnetic flux through the junction. Our observations demonstrate the presence of a Doppler shift in the energy of the Andreev levels, which results from diamagnetic screening currents in the hybrid Nb/InAs-banks. The data for conductance, excess and critical currents can be consistently explained in terms of the sample geometry and the McMillan energy, characterizing the transparency of the Nb/InAs-interface.Comment: 4 pages, 5 figures, title modifie
    • …
    corecore