2 research outputs found

    Motion Correction of Whole-Body PET Data with a Joint PET-MRI Registration Functional

    Get PDF
    Respiratory motion is known to degrade image quality in PET imaging. The necessary acquisition time of several minutes per bed position will inevitably lead to a blurring effect due to organ motion. A lot of research has been done with regards to motion correction of PET data. As full-body PET-MRI became available recently, the anatomical data provided by MRI is a promising source of motion information. Current PET-MRI-based motion correction approaches, however, do not take into account the available information provided by PET data. PET data, though, may add valuable additional information to increase motion estimation robustness and precision.In this work we propose a registration functional that is capable of performing motion detection in gated data of two modalities simultaneously. Evaluation is performed using phantom data. We demonstrate that performing a joint registration of both modalities does improve registration accuracy and PET image quality.<br

    Comparison of two elastic motion correction approaches for whole-body PET/CT: motion deblurring vs gate-to-gate motion correction

    Full text link
    BACKGROUND: Respiratory motion in PET/CT leads to well-known image degrading effects commonly compensated using elastic motion correction approaches. Gate-to-gate motion correction techniques are promising tools for improving clinical PET data but suffer from relatively long reconstruction times. In this study, the performance of a fast elastic motion compensation approach based on motion deblurring (DEB-MC) was evaluated on patient and phantom data and compared to an EM-based fully 3D gate-to-gate motion correction method (G2G-MC) which was considered the gold standard. METHODS: Twenty-eight patients were included in this study with suspected or confirmed malignancies in the thorax or abdomen. All patients underwent whole-body [18F]FDG PET/CT examinations applying hardware-based respiratory gating. In addition, a dynamic anthropomorphic thorax phantom was studied with PET/CT simulating tumour motion under controlled but realistic conditions. PET signal recovery values were calculated from phantom scans by comparing lesion activities after motion correction to static ground truth data. Differences in standardized uptake values (SUV) and metabolic volume (MV) between both reconstruction methods as well as between motion-corrected (MC) and non motion-corrected (NOMC) results were statistically analyzed using a Wilcoxon signed-rank test. RESULTS: Phantom data analysis showed high lesion recovery values of 91% (2 cm motion) and 98% (1 cm) for G2G-MC and 83% (2 cm) and 90% (1 cm) for DEB-MC. The statistical analysis of patient data found significant differences between NOMC and MC reconstructions for SUV max, SUV mean, MV, and contrast-to-noise ratio (CNR) for both reconstruction algorithms. Furthermore, both methods showed similar increases of 11–12% in SUV max and SUV mean after MC. The statistical analysis of the MC/NOMC ratio found no significant differences between the methods. CONCLUSION: Both motion correction techniques deliver comparable improvements of SUV max, SUV mean, and CNR after MC on clinical and phantom data. The fast elastic motion compensation technique DEB-MC may thereby be a valuable alternative to state-of-the art motion correction techniques
    corecore