1,361 research outputs found

    The Impact of Co-Infections for Human Gammaherpesvirus Infection and Associated Pathologies

    Get PDF
    The two oncogenic human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV) cause significant disease burden, particularly in immunosuppressed individuals. Both viruses display latent and lytic phases of their life cycle with different outcomes for their associated pathologies. The high prevalence of infectious diseases in Sub-Saharan Africa (SSA), particularly HIV/AIDS, tuberculosis, malaria, and more recently, COVID-19, as well as their associated inflammatory responses, could potentially impact either virus’ infectious course. However, acute or lytically active EBV and/or KSHV infections often present with symptoms mimicking these predominant diseases leading to misdiagnosis or underdiagnosis of oncogenic herpesvirus-associated pathologies. EBV and/or KSHV infections are generally acquired early in life and remain latent until lytic reactivation is triggered by various stimuli. This review summarizes known associations between infectious agents prevalent in SSA and underlying EBV and/or KSHV infection. While presenting an overview of both viruses’ biphasic life cycles, this review aims to highlight the importance of co-infections in the correct identification of risk factors for and diagnoses of EBV- and/or KSHV-associated pathologies, particularly in SSA, where both oncogenic herpesviruses as well as other infectious agents are highly pervasive and can lead to substantial morbidity and mortality

    Advances in Targeting HPV Infection as Potential Alternative Prophylactic Means

    Get PDF
    Infection by oncogenic human papillomavirus (HPV) is the primary cause of cervical cancer and other anogenital cancers. The majority of cervical cancer cases occur in low- and middle- income countries (LMIC). Concurrent infection with Human Immunodeficiency Virus (HIV) further increases the risk of HPV infection and exacerbates disease onset and progression. Highly effective prophylactic vaccines do exist to combat HPV infection with the most common oncogenic types, but the accessibility to these in LMIC is severely limited due to cost, difficulties in accessing the target population, cultural issues, and maintenance of a cold chain. Alternative preventive measures against HPV infection that are more accessible and affordable are therefore also needed to control cervical cancer risk. There are several efforts in identifying such alternative prophylactics which target key molecules involved in early HPV infection events. This review summarizes the current knowledge of the initial steps in HPV infection, from host cell-surface engagement to cellular trafficking of the viral genome before arrival in the nucleus. The key molecules that can be potentially targeted are highlighted, and a discussion on their applicability as alternative preventive means against HPV infection, with a focus on LMIC, is presented

    A plant-produced SARS-CoV-2 spike protein elicits heterologous immunity in hamsters

    Get PDF
    Molecular farming of vaccines has been heralded as a cheap, safe and scalable production platform. In reality, however, differences in the plant biosynthetic machinery, compared to mammalian cells, can complicate the production of viral glycoproteins. Remodelling the secretory pathway presents an opportunity to support key post-translational modifications, and to tailor aspects of glycosylation and glycosylation-directed folding. In this study, we applied an integrated host and glyco-engineering approach, NXS/T Generation™, to produce a SARS-CoV-2 prefusion spike trimer in Nicotiana benthamiana as a model antigen from an emerging virus. The size exclusion-purified protein exhibited a characteristic prefusion structure when viewed by transmission electron microscopy, and this was indistinguishable from the equivalent mammalian cell-produced antigen

    The role of inflammation in HPV infection of the Oesophagus

    Get PDF
    BACKGROUND: Several human cancers are known to be associated with inflammation and/or viral infections. However, the influence of tumour-related inflammation on viral uptake is largely unknown. In this study we used oesophageal squamous cell carcinoma (OSCC) as a model system since this type of cancer is associated with chronic irritation, inflammation and viral infections. Although still debated, the most important viral infection seems to be with Human Papillomavirus (HPV). The present study focused on a possible correlation between inflammation, OSCC development and the influence of HPV infection. METHODS: A total of 114 OSCC biopsies and corresponding normal tissue were collected at Groote Schuur Hospital and Tygerberg Hospital, Cape Town (South Africa), that were subjected to RNA and DNA isolation. RNA samples were analysed by quantitative Light Cycler RT-PCR for the expression of selected genes involved in inflammation and infection, while conventional PCR was performed on the DNA samples to assess the presence of integrated viral DNA. Further, an in vitro infection assay using HPV pseudovirions was established to study the influence of inflammation on viral infectivity using selected cell lines. RESULTS: HPV DNA was found in about 9% of OSCC patients, comprising predominantly the oncogenic type HPV18. The inflammatory markers IL6 and IL8 as well as the potential HPV receptor ITGA6 were significantly elevated while IL12A was downregulated in the tumour tissues. However, none of these genes were expressed in a virus-dependent manner. When inflammation was mimicked with various inflammatory stimulants such as benzo-alpha-pyrene, lipopolysaccharide and peptidoglycan in oesophageal epithelial cell lines in vitro, HPV18 pseudovirion uptake was enhanced only in the benzo-alpha-pyrene treated cells. Interestingly, HPV pseudovirion infectivity was independent of the presence of the ITGA6 receptor on the surface of the tested cells. CONCLUSION: This study showed that although the carcinogen benzo-alpha-pyrene facilitated HPV pseudovirion uptake into cells in culture, HPV infectivity was independent of inflammation and seems to play only a minor role in oesophageal cancer

    Exogenous Vimentin Supplementation Transiently Affects Early Steps during HPV16 Pseudovirus Infection

    Get PDF
    Understanding and modulating the early steps in oncogenic Human Papillomavirus (HPV) infection has great cancer-preventative potential, as this virus is the etiological agent of virtually all cervical cancer cases and is associated with many other anogenital and oropharyngeal cancers. Previous work from our laboratory has identified cell-surface-expressed vimentin as a novel HPV16 pseudovirus (HPV16-PsVs)-binding molecule modulating its infectious potential. To further explore its mode of inhibiting HPV16-PsVs internalisation, we supplemented it with exogenous recombinant human vimentin and show that only the globular form of the molecule (as opposed to the filamentous form) inhibited HPV16-PsVs internalisation in vitro. Further, this inhibitory effect was only transient and not sustained over prolonged incubation times, as demonstrated in vitro and in vivo, possibly due to full-entry molecule engagement by the virions once saturation levels have been reached. The vimentin-mediated delay of HPV16-PsVs internalisation could be narrowed down to affecting multiple steps during the virus’ interaction with the host cell and was found to affect both heparan sulphate proteoglycan (HSPG) binding as well as the subsequent entry receptor complex engagement. Interestingly, decreased pseudovirus internalisation (but not infection) in the presence of vimentin was also demonstrated for oncogenic HPV types 18, 31 and 45. Together, these data demonstrate the potential of vimentin as a modulator of HPV infection which can be used as a tool to study early mechanisms in infectious internalisation. However, further refinement is needed with regard to vimentin’s stabilisation and formulation before its development as an alternative prophylactic means

    Cellular Receptors Involved in KSHV Infection

    Get PDF
    The process of Kaposi’s Sarcoma Herpes Virus’ (KSHV) entry into target cells is complex and engages several viral glycoproteins which bind to a large range of host cell surface molecules. Receptors for KSHV include heparan sulphate proteoglycans (HSPGs), several integrins and Eph receptors, cystine/glutamate antiporter (xCT) and Dendritic Cell-Specific Intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN). This diverse range of potential binding and entry sites allows KSHV to have a broad cell tropism, and entry into specific cells is dependent on the available receptor repertoire. Several molecules involved in KSHV entry have been well characterized, particularly those postulated to be associated with KSHV-associated pathologies such as Kaposi’s Sarcoma (KS). In this review, KSHV infection of specific cell types pertinent to its pathogenesis will be comprehensively summarized with a focus on the specific cell surface binding and entry receptors KSHV exploits to gain access to a variety of cell types. Gaps in the current literature regarding understanding interactions between KSHV glycoproteins and cellular receptors in virus infection are identified which will lead to the development of virus infection intervention strategies

    The Role of the Eph Receptor Family in Tumorigenesis

    Get PDF
    The Eph receptor tyrosine kinase family, activated by binding to their cognate ephrin ligands, are important components of signalling pathways involved in animal development. More recently, they have received significant interest due to their involvement in oncogenesis. In most cases, their expression is altered, affecting the likes of cell proliferation and migration. Depending on the context, Eph receptors have the potential to act as both tumour promoters and suppressors in a number of cancers, such as breast cancer, colorectal cancer, lung cancer, prostate cancer, brain cancer and Kaposi’s sarcoma (KS), the latter being intrinsically linked to EphA2 as this is the receptor used for endothelial cell entry by the Kaposi’s sarcoma-associated herpesvirus (KSHV). In addition, EphA2 deregulation is associated with KS, indicating that it has a dual role in this case. Associations between EphA2 sequence variation and KSHV infection/KS progression have been detected, but further work is required to formally establish the links between EphA2 signalling and KS oncogenesis. This review consolidates the available literature of the role of the Eph receptor family, and particularly EphA2, in tumorigenesis, with the aim to develop a better understanding of Eph signalling pathways for potential targeting in novel cancer therapies

    Surfactant protein a impairs genital HPV16 pseudovirus infection by innate immune cell activation in a murine model

    Get PDF
    Infection by oncogenic human papillomavirus (HPV) is the principle cause of cervical cancer and other anogenital cancers. The majority of cervical cancer cases occur in low- and middle-income countries (LMIC). Prophylactic vaccines exist to combat HPV infection but accessibility to these in LMIC is limited. Alternative preventative measures against HPV infection are therefore also needed to control cervical cancer risk. HPV employs multiple mechanisms to evade the host immune response. Therefore, an approach to promote HPV recognition by the immune system can reduce infection. Surfactant proteins A and D (SP-A and SP-D) are highly effective innate opsonins of pathogens. Their function is primarily understood in the lung, but they are also expressed at other sites of the body, including the female reproductive tract (FRT). We hypothesized that raised levels of SP-A and/or SP-D may enhance immune recognition of HPV and reduce infection. Co-immunoprecipitation and flow cytometry experiments showed that purified human SP-A protein directly bound HPV16 pseudovirions (HPV16-PsVs), and the resulting HPV16-PsVs/SP-A complex enhanced uptake of HPV16-PsVs by RAW264.7 murine macrophages. In contrast, a recombinant fragment of human SP-D bound HPV16-PsVs weakly and had no effect on viral uptake. To assess if SP-A modulates HPV16-PsVs infection in vivo, a murine cervicovaginal challenge model was applied. Surprisingly, neither naïve nor C57BL/6 mice challenged with HPV16-PsVs expressed SP-A in the FRT. However, pre-incubation of HPV16-PsVs with purified human SP-A at a 1:10 (w/w) ratio significantly reduced the level of HPV16-PsV infection. When isolated cells from FRTs of naïve C57BL/6 mice were incubated with HPV16-PsVs and stained for selected innate immune cell populations by flow cytometry, significant increases in HPV16-PsVs uptake by eosinophils, neutrophils, monocytes, and macrophages were observed over time using SP-A-pre-adsorbed virions compared to control particles. This study is the first to describe a biochemical and functional association of HPV16 virions with the innate immune molecule SP-A. We show that SP-A impairs HPV16-PsVs infection and propose that SP-A is a potential candidate for use in topical microbicides which provide protection against new HPV infections
    corecore