12,593 research outputs found

    Rheology of human blood plasma: Viscoelastic versus Newtonian behavior

    Full text link
    We investigate the rheological characteristics of human blood plasma in shear and elongational flows. While we can confirm a Newtonian behavior in shear flow within experimental resolution, we find a viscoelastic behavior of blood plasma in the pure extensional flow of a capillary break-up rheometer. The influence of the viscoelasticity of blood plasma on capillary blood flow is tested in a microfluidic device with a contraction-expansion geometry. Differential pressure measurements revealed that the plasma has a pronounced flow resistance compared to that of pure water. Supplementary measurements indicate that the viscoelasticity of the plasma might even lead to viscoelastic instabilities under certain conditions. Our findings show that the viscoelastic properties of plasma should not be ignored in future studies on blood flow.Comment: 4 figures, 1 supplementary material Highlighted in http://physics.aps.org/articles/v6/1

    Superdense Matter

    Get PDF
    We review recent work on the phase structure of QCD at very high baryon density. We introduce the phenomenon of color superconductivity and discuss the use of weak coupling methods. We study the phase structure as a function of the number of flavors and their masses. We also introduce effective theories that describe low energy excitations at high baryon density. Finally, we study the possibility of kaon condensation at very large baryon density.Comment: 13 pages, talk at ICPAQGP, Jaipur, India, Nov. 26-30, 2001; to appear in the proceeding

    Mass Terms in Effective Theories of High Density Quark Matter

    Get PDF
    We study the structure of mass terms in the effective theory for quasi-particles in QCD at high baryon density. To next-to-leading order in the 1/pF1/p_F expansion we find two types of mass terms, chirality conserving two-fermion operators and chirality violating four-fermion operators. In the effective chiral theory for Goldstone modes in the color-flavor-locked (CFL) phase the former terms correspond to effective chemical potentials, while the latter lead to Lorentz invariant mass terms. We compute the masses of Goldstone bosons in the CFL phase, confirming earlier results by Son and Stephanov as well as Bedaque and Sch\"afer. We show that to leading order in the coupling constant gg there is no anti-particle gap contribution to the mass of Goldstone modes, and that our results are independent of the choice of gauge.Comment: 22 pages, 4 figure

    Lattice QCD at finite temperature: Evidence for calorons from the eigenvectors of the Dirac operator

    Get PDF
    We analyze the eigenvalues and eigenvectors of the staggered Dirac operator in quenched lattice QCD in the vicinity of the deconfinement phase transition using the L\"uscher-Weisz gauge action. The spectral and localization properties of the low-lying eigenmodes show characteristic differences between the Z_3 sectors above the critical temperature T_c. These findings can be interpreted in terms of calorons.Comment: Lattice2001(hightemp), 3 pages, 2 figure

    Instanton Effects in QCD at High Baryon Density

    Get PDF
    We study instanton effects in QCD at very high baryon density. In this regime instantons are suppressed by a large power of (ΛQCD/ÎŒ)(\Lambda_{QCD}/\mu), where ΛQCD\Lambda_{QCD} is the QCD scale parameter and ÎŒ\mu is the baryon chemical potential. Instantons are nevertheless important because they contribute to several physical observables that vanish to all orders in perturbative QCD. We study, in particular, the chiral condensate and its contribution mGB2∌mm_{GB}^2\sim m to the masses of Goldstone bosons in the CFL phase of QCD with Nf=3N_f=3 flavors. We find that at densities ρ∌(5−10)ρ0\rho\sim (5-10) \rho_0, where ρ0\rho_0 is the density of nuclear matter, the result is dominated by large instantons and subject to considerable uncertainties. We suggest that these uncertainties can be addressed using lattice calculations of the instanton density and the pseudoscalar diquark mass in QCD with two colors. We study the topological susceptibility and Witten-Veneziano type mass relations in both Nc=2N_c=2 and Nc=3N_c=3 QCD.Comment: 27 pages, 8 figures, minor revision
    • 

    corecore