47 research outputs found

    Procalcitonin and community-acquired pneumonia (CAP) in children

    Get PDF
    The role of procalcitonin (PCT) as a biomarker for sepsis in adults is well documented, while its role in infections affecting neonatal children remains controversial. Among these infections, Community-Acquired pneumonia (CAP) has been studied extensively, because it's the second cause of death in children in developing countries, and one of the most frequent causes of hospitalization in industrialized countries. The PubMed database and the Cochrane Library were used to search for the following keywords: CAP, procalcitonin, children. Thirteen articles were studied to determine the role of PCT in CAP management, specifically its usefulness for distinguishing pneumococcal infections from viral and unknown infections, for predicting severity and the correct antibiotic treatment. This paper focuses on the studies performed to identify the best inflammatory biomarker for CAP management. Although there is an increase in studies confirming the usefulness of PCT in CAP management in children, further studies are needed to have better understanding of its role for pediatric CAP management

    Serum Vitamin D as a Biomarker in Autoimmune, Psychiatric and Neurodegenerative Diseases

    Get PDF
    Vitamin D is a steroid hormone regulating calcium-phosphorus homeostasis, immune response and brain function. In the past thirty years, an increasing number of cohort studies, meta-analyses and randomized controlled trials (RTCs) evaluated the serum levels of 25-hydroxyvitamin D [25(OH)D], which is considered the Vitamin D status biomarker, in patients affected by neurological, psychiatric and autoimmune diseases. Although an association between low 25(OH)D serum levels and the prevalence of these diseases has been found, it is still unclear whether the serum 25(OH)D measurement can be clinically useful as a biomarker for diagnosis, prognosis and predicting treatment response in neurodegeneration, mental illness and immune-mediated disorders. The lack of standardized data, as well as discrepancies among the studies (in the analytical methods, cut-offs, endpoints and study sets), weakened the findings achieved, hindered pooling data, and, consequently, hampered drawing conclusions. This narrative review summarizes the main findings from the studies performed on serum 25(OH)D in neurological, psychiatric and autoimmune diseases, and clarifies whether or not serum 25(OH)D can be used as a reliable biomarker in these diseases

    Detection of oncogenic human papillomavirus genotypes on spermatozoa from male partners of infertile couples

    Get PDF
    Objective: To evaluate the prevalence of human papillomavirus (HPV) sperm infection and its correlation with sperm parameters in patients who attended a fertility clinic. Design: Cross-sectional clinical study. Setting: University-affiliated Reproductive Medicine Clinic. Patients: A total of 308 male partners of couples undergoing in vitro fertilization techniques. Interventions: Specimens of semen were collected from all patients. Main Outcome Measures: Sperm parameters were evaluated according to the World Health Organization manual. The presence of HPV-DNA was researched by the combined use of two HPV assays and a highly sensitive nested PCR assay, followed by HPV genotyping. To examine whether HPV was associated with the sperm, in situ hybridization (ISH) analysis was performed. Results: Results of HPV investigation were compared to sperm parameters and ISH analysis. Twenty-four out of 308 (7.8%) semen samples were HPV DNA positive but HPV infection does not seem to affect semen quality. Moreover, ISH revealed a clear HPV localization at the equatorial region of sperm head in infected samples. Conclusions: Oncogenic HPV genotypes were detected on spermatozoa from asymptomatic subjects but a role of the infection in male infertility was not demonstrated

    Microglial Activation and Priming in Alzheimer’s Disease: State of the Art and Future Perspectives

    Get PDF
    Alzheimer's Disease (AD) is the most common cause of dementia, having a remarkable social and healthcare burden worldwide. Amyloid beta (A beta) and protein Tau aggregates are disease hallmarks and key players in AD pathogenesis. However, it has been hypothesized that microglia can contribute to AD pathophysiology, as well. Microglia are CNS-resident immune cells belonging to the myeloid lineage of the innate arm of immunity. Under physiological conditions, microglia are in constant motion in order to carry on their housekeeping function, and they maintain an anti-inflammatory, quiescent state, with low expression of cytokines and no phagocytic activity. Upon various stimuli (debris, ATP, misfolded proteins, aggregates and pathogens), microglia acquire a phagocytic function and overexpress cytokine gene modules. This process is generally regarded as microglia activation and implies that the production of pro-inflammatory cytokines is counterbalanced by the synthesis and the release of anti-inflammatory molecules. This mechanism avoids excessive inflammatory response and inappropriate microglial activation, which causes tissue damage and brain homeostasis impairment. Once the pathogenic stimulus has been cleared, activated microglia return to the naive, anti-inflammatory state. Upon repeated stimuli (as in the case of A beta deposition in the early stage of AD), activated microglia shift toward a less protective, neurotoxic phenotype, known as "primed " microglia. The main characteristic of primed microglia is their lower capability to turn back toward the naive, anti-inflammatory state, which makes these cells prone to chronic activation and favours chronic inflammation in the brain. Primed microglia have impaired defence capacity against injury and detrimental effects on the brain microenvironment. Additionally, priming has been associated with AD onset and progression and can represent a promising target for AD treatment strategies. Many factors (genetics, environmental factors, baseline inflammatory status of microglia, ageing) generate an aberrantly activated phenotype that undergoes priming easier and earlier than normally activated microglia do. Novel, promising targets for therapeutic strategies for AD have been sought in the field of microglia activation and, importantly, among those factors influencing the baseline status of these cells. The CX3CL1 pathway could be a valuable target treatment approach in AD, although preliminary findings from the studies in this field are controversial. The current review aims to summarize state of the art on the role of microglia dysfunction in AD pathogenesis and proposes biochemical pathways with possible targets for AD treatment

    Evaluation of anti-sars-cov-2 s-rbd igg antibodies after covid-19 mrna bnt162b2 vaccine

    Get PDF
    (1) Background: The evaluation of anti-spike protein receptor-binding domain (S-RBD) antibodies represents a useful tool to estimate the individual protection against Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection; (2) Methods: We evaluated anti S-RBD IgG levels by indirect chemiluminescence immunoassay on Maglumi 800 (SNIBE, California) in 2248 vaccinated subjects without previous SARS-CoV-2 infection, 91 vaccinated individuals recovered from COVID-19, and 268 individuals recovered from COVID-19 who had not been vaccinated. Among those who were healthy and vaccinated, 352 subjects performed a re-dosing after about 72 days from the first measurement. (3) Results: Anti S-RBD IgG levels were lower in subjects with previous infection than vaccinated subjects, with or without previous infection (p < 0.001). No difference was observed between vaccinated subjects, with and without previous SARS-CoV-2 infection. Overall, anti-RBD IgG levels were higher in females than males (2110 vs. 1341 BAU/mL; p < 0.001) as well as in subjects with symptoms after vaccination than asymptomatic ones (2085 vs. 1332 BAU/mL; p = 0.001) and lower in older than younger subjects. Finally, a significant decrease in anti-RBD IgG levels was observed within a short period from a complete two-dose cycle vaccination. (4) Conclusions: Our results show an efficacy antibody response after vaccination with age-, timeand sex-related differences

    A new tool for sepsis screening in the Emergency Department

    Get PDF
    In this study, we developed and evaluated the diagnostic accuracy of the Sepsis Index for early sepsis screening in the Emergency Department (ED). Sepsis Index is based on the combination of monocyte distribution width (MDW) and mean monocyte volume (MMV). Sepsis Index≥1 was selected to define sepsis. We tested its diagnostic accuracy in an ED population stratified in four groups: Controls, Systemic Inflammatory Response Syndrome (SIRS), infection, and sepsis, according to Sepsis-2 criteria. Patients with sepsis displayed higher median Sepsis Index value than patients without sepsis. At the receiver operating characterictis (ROC) curve analysis for the prediction of sepsis, the area under the curve (AUC) of MDW and Sepsis Index were similar: 0.966 (95%CI 0.947-0.984), and 0.964 (95%CI 0.942-0.985), respectively. Sepsis Index showed increased specificity than MDW (94.7 vs. 90.6%), without any decrease in sensitivity (92.0%). Additionally, LR+ increased from 9.8 (MDW) to 17.4 (Sepsis Index), without any substantial change in LR-(respectively 0.09 vs. 0.08). Finally, PPV increased from 0.286 (MDW) to 0.420 (Sepsis Index). Sepsis Index improves the diagnostic accuracy of MDW alone for sepsis screening

    Comparative analysis of biochip mosaic-based indirect immunofluorescence with enzyme-linked immunosorbent assay for diagnosing myasthenia gravis

    Get PDF
    Background: The detection of anti-acetylcholine receptor (AChR) and anti-muscle-specific tyrosine kinase (MuSK) antibodies is useful in myasthenia gravis (MG) diagnosis and management. BIOCHIP mosaic-based indirect immunofluorescence is a novel analytical method, which employs the simultaneous detection of anti-AChR and anti-MuSK antibodies in a single miniature incubation field. In this study, we compare, for the first time, the BIOCHIP MG mosaic with conventional enzyme-linked immunosorbent assay (ELISA) in the diagnosis of MG. Methods: A total of 71 patients with MG diagnosis were included in the study. Anti-AChR and anti-MuSK antibodies were measured separately by two different ELISA and simultaneously by BIOCHIP. The results were then compared. Results: The overall concordance between ELISA and BIOCHIP for anti-AChR reactivity was 74%. Cohen’s kappa was 0.51 (95% CI 0.32–0.71), which corresponds to 90% of the maximum possible kappa (0.57), given the observed marginal frequencies. The overall concordance for anti-MuSK reactivity was 84%. Cohen’s kappa was 0.11 (95% CI 0.00–0.36), which corresponds to 41% of the maximum possible kappa (0.27). Conclusion: The overall concordance among assays is not optimal

    Foxp3 and gata3 polymorphisms, vitamin d3 and multiple sclerosis

    Get PDF
    Background: Regulatory T cells (Tregs) alterations have been implicated in the pathogenesis of Multiple Sclerosis (MS). Recently, a crucial role of the X-Linked Forkhead Box P3 (FoxP3) for the development and the stability of Tregs has emerged, and FOXP3 gene polymorphisms have been associated with the susceptibility to autoimmune diseases. The expression of Foxp3 in Tregs is regulated by the transcription factor GATA binding-protein 3 (GATA3) and vitamin D3 . The aim of this retrospective case-control study was to investigate the potential association between FOXP3 and GATA3 genetic variants, Vitamin D3, and MS risk. Methods: We analyzed two polymorphisms in the FOXP3 gene (rs3761547 and rs3761548) and a polymorphism in the GATA3 gene (rs3824662) in 106 MS patients and 113 healthy controls. Serum 25(OH)D3 was also measured in all participants. Results: No statistically significant genotypic and allelic differences were found in the distribution of FOXP3 rs3761547 and rs3761548, or GATA3 rs3824662 in the MS patients, compared with controls. Patients that were homozygous for rs3761547 had lower 25(OH)D3 levels. Conclusions: Our findings did not show any association among FOXP3 and GATA3 SNPs, vitamin D3, and MS susceptibility

    Vitamin D increases the production of IL-10 by regulatory T cells in patients with systemic sclerosis

    Get PDF
    OBJECTIVES: Vitamin D status influences the risk to develop autoimmune diseases affecting the percentage and/or functions of regulatory T cells (Tregs). Since low levels of 25 (OH) D have been decreased in patients with systemic sclerosis (SSc), we aimed to study the effect of Vitamin D3 (cholecalciferol) supplementation on Tregs frequencies and functions. METHODS: Peripheral blood and sera samples were obtained from 45 SSc patients and controls (HC). A number of eighteen SSc patients had consumed Cholecalciferol (orally) at the dose of 25.000 UI/month for 6 months at the time of enrollment. 25(OH)D serum levels were measured and VDR polymorphisms, were genotyped by polymerase chain reaction (PCR). Tregs isolated from peripheral blood mononuclear cells were in vitro expanded and a suppression assay was performed. Flow cytometry analysis was then carried out. Finally, IL-10 production was assayed by ELISA. RESULTS: Low serum levels of 25(OH)D were detected in SSc patients. The percentage of Tregs in SSc patients was similar to controls, but, among SSc patients, it was higher in those patients taking cholecalciferol. Tregs capability to suppress T cell proliferation was impaired in SSc patients and not restored after in vitro pre-treatment with the active form of Vitamin D (1,25(OH)2D3); but at the same time the production of IL-10 was increased in treated samples obtained from patients. The lack of response of Tregs from SSc patients to 1,25(OH)2D3 treatment in vitro was not due to altered Vitamin D/VDR signalling. CONCLUSIONS: Altogether, our results indicate that the increased production of IL-10 by 1,25(OH)2D3 -treated Tregs could provide a "suppressive" cytokine milieu able to modulate immune response but it is not sufficient to restore the immune suppressive functions of Tregs

    Proton-irradiated breast cells: molecular points of view

    Get PDF
    Breast cancer (BC) is the most common cancer in women, highly heterogeneous at both the clinical and molecular level. Radiation therapy (RT) represents an efficient modality to treat localized tumor in BC care, although the choice of a unique treatment plan for all BC patients, including RT, may not be the best option. Technological advances in RT are evolving with the use of charged particle beams (i.e. protons) which, due to a more localized delivery of the radiation dose, reduce the dose administered to the heart compared with conventional RT. However, few data regarding proton-induced molecular changes are currently available. The aim of this study was to investigate and describe the production of immunological molecules and gene expression profiles induced by proton irradiation. We performed Luminex assay and cDNA microarray analyses to study the biological processes activated following irradiation with proton beams, both in the non-tumorigenic MCF10A cell line and in two tumorigenic BC cell lines, MCF7 and MDA-MB-231. The immunological signatures were dose dependent in MCF10A and MCF7 cell lines, whereas MDA-MB-231 cells show a strong pro-inflammatory profile regardless of the dose delivered. Clonogenic assay revealed different surviving fractions according to the breast cell lines analyzed. We found the involvement of genes related to cell response to proton irradiation and reported specific cell line- and dose-dependent gene signatures, able to drive cell fate after radiation exposure. Our data could represent a useful tool to better understand the molecular mechanisms elicited by proton irradiation and to predict treatment outcome
    corecore