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Abstract: Background: Regulatory T cells (Tregs) alterations have been implicated in the pathogenesis
of Multiple Sclerosis (MS). Recently, a crucial role of the X-Linked Forkhead Box P3 (FoxP3) for the
development and the stability of Tregs has emerged, and FOXP3 gene polymorphisms have been
associated with the susceptibility to autoimmune diseases. The expression of Foxp3 in Tregs is
regulated by the transcription factor GATA binding-protein 3 (GATA3) and vitamin D3. The aim of
this retrospective case-control study was to investigate the potential association between FOXP3 and
GATA3 genetic variants, Vitamin D3, and MS risk. Methods: We analyzed two polymorphisms in
the FOXP3 gene (rs3761547 and rs3761548) and a polymorphism in the GATA3 gene (rs3824662) in
106 MS patients and 113 healthy controls. Serum 25(OH)D3 was also measured in all participants.
Results: No statistically significant genotypic and allelic differences were found in the distribution of
FOXP3 rs3761547 and rs3761548, or GATA3 rs3824662 in the MS patients, compared with controls.
Patients that were homozygous for rs3761547 had lower 25(OH)D3 levels. Conclusions: Our findings
did not show any association among FOXP3 and GATA3 SNPs, vitamin D3, and MS susceptibility.

Keywords: multiple sclerosis; genetic; polymorphisms; FOXP3; GATA3; vitamin D

1. Introduction

Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disease of the central
nervous system (CNS). Studies on Experimental Autoimmune Encephalomyelitis (EAE),
which represents the best animal model of MS, made a significant contribution to the
understanding of MS pathogenesis. It is now well documented that CD4 (+) and CD8
(+) T lymphocytes and their related cytokines, as well as B-lymphocytes, take part in the
development of MS. Among CD4 (+) T cells, it is possible to distinguish different cell
subsets according to their cytokine secretion pattern [1]. Specifically, Th1 and Th17 cells
produce pro-inflammatory cytokines, such as IFN-γ and IL-17, respectively, whereas Th2
and regulatory T cells (Tregs) produce anti-inflammatory cytokines, such as IL-10 [2,3].
Tregs have an essential role in controlling the immune system by several mechanisms,
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including regulation of antigen-presenting cells (APC) function, induction of tolerance,
cytolysis, and expression of inhibitory cytokines [4]. Overall, Tregs are fundamental in
maintaining immune self-tolerance and immune homeostasis, limiting excessive inflam-
mation. Alterations of Tregs, including numerical reduction and functional changes, have
been implied in the immune-mediated damage of myelin and axons, leading to neuronal
damage and neuroinflammation in MS [5]. Moreover, reduced migration of Tregs into
CNS of MS patients has been described [6]. Noteworthy, master-regulators of transcription
are essential for T lymphocytes function [1]. Among these, the X-Linked Forkhead Box
P3 (FoxP3) has a crucial role in Tregs development and stability, as shown by in vivo
and in vitro studies [7–9]. In particular, FOXP3-deficient Treg cells have been shown to
reduce expression of Treg cell signature genes, such as TGF-β, IL-10, and CTLA4, which
are critical for tolerance and immunosuppression, while gained the expression of cytokine
genes, such as IFN-γ, TNF-α, and IL-17, which stimulate the immune response [7]. Many
polymorphisms in the gene codifying for Foxp3 have been associated with reduced levels
of Foxp3 and impaired suppressive function of Treg cells, resulting in the development
of autoimmune diseases [10]. An association between single nucleotide polymorphisms
(SNPs) of the FOXP3 gene and autoimmune diseases, such as allergy, Graves’ disease, and
systemic lupus erythematosus, has been described [11–13].

Additionally, the sustained trek expression of Foxp3 is regulated by several factors, in-
cluding the transcription factor GATA binding-protein 3 (GATA3) and vitamin D3. In vivo
and in vitro studies showed that GATA3 expression has a fundamental role in maintain-
ing high-levels of Foxp3 in Tregs [14]. GATA3 has been reported to prevent excessive
polarization toward Th17 and inflammatory cytokine production of Treg cells. Indeed,
GATA-3-null Treg cells have been shown to fail to maintain peripheral homeostasis and sup-
pressive function, shifting toward Th17 cell phenotypes and expressing reduced amounts
of Foxp3 [15].

Vitamin D3 has a pivotal role in regulating the immune system [16–19]. An association
between reduced levels of vitamin D3 and increased risk of several autoimmune diseases,
including MS, has been documented. Several hypotheses have been proposed to explain
the potential role of vitamin D in the pathophysiology of MS. Among these, experimental
studies revealed that 1,25-dihydroxivitamin D3 (1,25(OH)2D3) regulates FOXP3 expression
in Tregs [20]. Thus, reduced vitamin D3 levels could be associated with reduced FOXP3
expression and, consequently, could increase the risk of MS.

The aim of this study was to investigate the association among SNPs in FOXP3 and
GATA3 genes, vitamin D3, and MS susceptibility. Specifically, we selected two SNPs in
FOXP3 gene, namely rs3761547 and rs3761548, and the rs3824662 in the GATA3 gene,
which could influence the FOXP3 and GATA3 expression, respectively. Thus, they could
predispose to the development of autoimmune diseases, such as MS.

2. Materials and Methods
2.1. Study Population

We performed a retrospective case-control study on a cohort consisting of 106 patients
with MS and 113 healthy controls. Cases were enrolled from June 2013 to December 2014
at the Department of Neurology, University Hospital of Palermo. Healthy controls were
blood donors, enrolled from April 2015 to July 2016, at the Unit of Transfusion Medicine
of Villa Sofia-Cervello Hospital in Palermo. The study was performed in accordance with
the Declaration of Helsinki, and the local medical ethics committee approved the protocol.
All subjects provided informed consent. An experienced neurologist made the diagnosis
of MS according to revised McDonald criteria [21]. The neurological status of patients
was assessed using Kurtzke’s Expanded Disability Status Scale (EDSS). The progression
of disability was assessed using the Multiple Sclerosis Severity Score (MSSS) [22]. The
annualized relapse rate (ARR) was calculated in the year before genotyping. The MS group
consisted of 27 men and 79 women, median (IQR) age 39 (34–48) years. Eighty-four percent
of patients were diagnosed with the relapsing-remitting form of the disease (RRMS), 15%
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with the secondary-progressive form (SPMS), and 1% with the primary progressive form
(PPMS). The overall median (IQR) of disease duration was 10.6 (2.4–20.2), EDSS score 2.3
(1.4–5.0), MSSS score 3.3 (1.5–5.5), and ARR scores 1 (1–2).

The control group consisted of 58 men and 55 women with a median (IQR) age of
40 years (28–49).

The study protocol was approved by the Ethics Committee of the University Hospital
of Palermo (nr 07/2016) and was performed in accordance with the current revision of
the Helsinki Declaration. Informed consent was obtained from all individual participants
included in the study.

2.2. Molecular Analysis

Whole blood samples from patients and controls were collected in EDTA tubes and
stored at 4 ◦C for subsequent DNA extraction. Genomic DNA was extracted from 200 µL
of whole blood using a commercial kit (Qiagen, Valencia, CA, USA), according to the
manufacturer’s instructions. The DNA quality was evaluated by electrophoresis in a 0.8%
agarose gel, quantified by using absorbance spectrophotometric analysis and stored at
−20 ◦C for subsequent analysis.

We selected two SNPs in the FOXP3 gene, namely rs3761548 and rs3761547, and a SNP
in the GATA3 gene, namely rs3824662, based on evidence in the literature [23,24]. Character-
istics of all selected SNPs are shown in Table 1. We used the following primers (VIC/FAM):
TGTCTGCAGGGCTTCAAGTTGACAA(T/C)TGCCCCTCTATCCAGGGGACTGGCT for
rs3761547; GGTGCTGAGGGGTAAACTGAGGCCT(T/G)CAGTTGGGGAGAGAGCC
AGAACCAG for rs3761548; AGGAAGGCGCCTTTGGCATGCACTG(A/C)AGCGTG
TTTGTGTTTAATCTCAGGG for rs3824662.

Table 1. Characteristics of FOXP3 and GATA3 single nucleotide polymorphisms (SNPs).

Gene Chromosome SNP Ancestral
Allele

Substitution
Allele

SNP
Location

Functional
Effect Ref.

FOXP3 X

rs3761547 T C Intron Unknown -

rs3761548 G T Intron Reduced
expression [25]

GATA3 10 rs3824662 C A Intron Altered
expression [23]

All samples were genotyped using real-time allelic discrimination TaqMan assay
(Applied Biosystems). The genotyping was performed by a 7500 real-time PCR system. All
PCR reaction mixtures contained 1 µL DNA (≈25 ng), 5 µL TaqMan Genotyping Master
Mix, and 0.25 µL genotyping Assay mix containing primers and FAM- or VIC-labeled
probes and distilled water for a final volume of 20 µL. The real-time PCR conditions were
initially 60 ◦C for 30 s and then 95 ◦C for 10 min, and subsequently 40 cycles of amplification
(95 ◦C for 15 s and 60 ◦C for 1 min), and finally 60 ◦C for 30 s (Applied Biosystems).

2.3. Biochemical Analysis

Serum 25(OH)D3 levels were measured by high-performance liquid chromatography
(HPLC) using a Chromosystem reagent kit (Chromsystems Instruments & Chemicals
GmbH; Grafelfing, Munich, Germany).

According to the recommendation of the Institute of Medicine, vitamin D3 deficiency
was defined as serum 25(OH)D3 < 20 ng/mL, vitamin D3 insufficiency as serum 25(OH)D3
levels 20–30 ng/mL, and vitamin D3 sufficiency as serum 25(OH)D3 > 30 ng/mL.

2.4. Statistical Analysis

Statistical analysis was performed by SPSS version 17.0 (SPSS Inc., Chicago, IL, USA)
and R Language v.3.6.1 (R Foundation for Statistical Computing, Vienna, Austria). Quan-
titative variables were expressed by the median and interquartile range (IQR) while cat-
egorical variables by absolute and relative frequencies. All genotypes were tested for
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Hardy–Weinberg equilibrium by using an exact test. Differences in age or vitamin D
levels between MS patients and controls were evaluated by both parametric t-test and
non-parametric Mann–Whitney test. The association between MS diagnosis (dependent
dichotomous variable) or vitamin D levels (continuous dependent variable) and predictors
was evaluated, respectively, by multivariate logistic regression and General Linear Model.
Association with chrX SNP was evaluated assuming (0, 2) dosage for males and adjusting
for sex.

3. Results

We enrolled 106 MS patients and 113 healthy controls. Table 2 shows the clinical
characteristics of the study population. The polymorphisms were in Hardy–Weinberg
equilibrium (p > 0.05). Genotype and allele frequencies of cases and controls are shown
in Tables 3 and 4. No significant statistical association was found by logistic regression
between FOXP3 rs3761547 and rs3761548 as well as GATA3 rs3824662 genotypes and MS
disease. Moreover, no association was found between FOXP3 rs3761548 and rs3761547 or
GATA3 rs3824662 genotypes on the age of disease onset (p ranging from 0.284 to 0.955),
diseases duration (p ranging from 0.259 to 0.547) EDSS (p ranging from 0.631 to 0.985),
MSSS (p ranging from 0.601 to 0.680) and ARR (p ranging from 0.203 to 0.900).

Table 2. Demographic and clinical characteristics of multiple sclerosis (MS) patients and controls.

MS (n = 106) Controls (n = 113) p-Value

Age (years) 39 (34–48) 40 (28–49) 0.703

Sex, n (male/female) 27/79 58/55 <0.001

25(OH)3, µg/L 20.0 (15.0–25.0) 39.0 (28.5–49.0) <0.001

Disease duration (years) 10.6 (2.4–20.2) -

Age of MS onset (years) 28 (22–32) -

MS-type (%) RR/SP/PP 84/15/1 -

EDSS 2.3 (1.4–5) -

MSSS 3.3 (1.5–5.5) -

ARR 1 (1–2) -
Data are shown as: median (interquartile range), RR, Relapsing Remitting; SP, Secodary Progressive; PP, Primary
Progressive; EDSS = Expanded Disability Status Scale; MSSS = Multiple Sclerosis Severity Score; ARR = annualized
relapse rate.

Table 3. Distribution of genotypic and allelic frequencies of the FOXP3 SNPs in MS patients and controls.

SNP Patients (n/%) Controls (n/%) p-Value

rs3761548 (FOXP3) Male (27) Female (79) Male (58) Female (55)
GG 12 (15) 11 (21)

0.997
TG 41 (52) 30 (54)
TT 26 (33) 14 (25)
G 15 (56) 26 (45)
T 12 (44) 32 (55)

rs3761547 (FOXP3) Male (27) Female (79) Male (58) Female (55)
TT 63 (80) 44 (80)

0.460
TC 14 (18) 9 (16)
CC 2 (2) 2 (4)
T 24 (88) 56 (97)
C 3 (12) 2 (3)
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Table 4. Distribution of genotypic and allelic frequencies of the GATA3 SNP in MS patients and controls.

SNP Patients (n/%) Controls (n/%) p-Value

rs3824662 (GATA3)
CC 61 (57) 64 (54)

0.945
CA 39(37) 43 (38)
AA 6 (6) 6 (8)
C 161 (76) 171 (75)
A 51 (24) 55 (25)

We found that serum 25(OH)D3 levels were significantly lower in MS patients than
in controls (20.0 (15.0–25.0)µg/L and 39.0 (28.5–49.0)µg/L, respectively; p < 0.001). In
particular, vitamin D3 insufficiency was prevalent in MS patients (59%); 26% had vitamin
D3 deficiency, and only 15% had optimal levels. Moreover, men in the whole sample
displayed significantly higher levels of vitamin D3 than women (median 33 (24–45) µg/L
vs. 25 (19–35) µg/L; p = 0.007). Nevertheless, vitamin D3 was not associated with age
(p = 0.683).

Multivariate analysis was performed using vitamin D3 levels as a dependent variable,
while age, sex, MS diagnosis, and studied polymorphisms (three different models) as
independent variables. The analysis showed that none of the three studied polymorphisms
were associated with vitamin D levels (p ranging from 0.270 to 0.894). Interestingly, the
only independent predictor that was found significantly associated with vitamin D3 levels
in all three models investigated was the presence of the MS, further supporting previous
literature results on the role of vitamin D in MS.

4. Discussion

MS is a multifactorial disease that occurs in genetically susceptible individuals after
exposure to environmental factors, which contribute to the loss of tolerance and activation
of T cells to myelin antigens [26,27].

Genetic studies uncovered several gene variants, which are putatively associated with
MS susceptibility, including those codifying molecules involved in vitamin D3
metabolism [28–33]. However, an essential role for Foxp3 has recently emerged. Foxp3 is a
transcription factor belonging to the forkhead/winged-helix transcription factor family,
and it is fundamental for maintaining the suppressive activity of Tregs [34,35]. Genetic
variants of FOXP3 have been associated with an impaired function and differentiation of
Treg cells, resulting in autoimmune dysfunction. Some Authors reported altered expression
of Foxp3 in patients with MS [36–38]. A transcriptional factor critical for Treg cell function
and Foxp3 expression is GATA3 [39], as revealed by in vivo studies [15]. Wang et al. [15]
showed that GATA-3-null Treg cells failed to maintain peripheral homeostasis and suppres-
sive function, gained Th17 cell phenotypes, and expressed reduced Foxp3 levels. Finally,
vitamin D3 has an important role in regulating the expression of FOXP3.

Given this evidence, we performed a case-control study to evaluate the possible in-
fluence of two SNPs in the promoter region of FOXP3 and an SNP of GATA3 on genetic
predisposition to MS. Moreover, we investigated the relationship between such polymor-
phisms and 25(OH)D3.

Among the selected FOXP3 SNPs, a functional effect has been reported only for the
rs3761548 [25]. In particular, the minor allele A has been associated with an impaired
interaction of the promoter region of FOXP3 with transcription factors, such as E47 and
C-Myb, which reduce FOXP3 transcription. Similarly, the rs3824662 GATA3 has been
associated with altered GATA3 expression [23].

In this study, we did not find any association among the selected SNPs, MS suscep-
tibility, and 25(OH)D3. Although the influence of FOXP3 SNPs on disease risk has been
established in several autoimmune diseases, such as systemic sclerosis [40] and asthma [41],
contrasting results have been reported in MS patients. Jafarzadeh et al. [42] and Eftekhar-
ian et al. [43] found an association between rs3761548 FOXP3 gene and MS in an Iranian
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population. Recently, Wawrusiewicz-Kurylonek et al. [24] investigated the association of
three SNPs of FOXP3, including the rs3761548 and the rs3761547, on MS risk in a Polish
population. The authors found a gender-specific relation between rs3761547 FOXP3 gene
polymorphism and MS susceptibility. In particular, such polymorphism was associated
with increased risk only in male patients. On the other hand, Gajdošechová et al. failed
to find any association between FOXP3 SNPs and MS risk in a Slovak population [44].
Similar results were found by Işik et al. [45]. Flauzino et al. found an association between
the rs3761548 FOXP3 and MS in females in a Brazilian population [46]. Additionally,
Zhang et al. [47] performed a meta-analysis on five studies investigating the correlation
between FOXP3 polymorphisms and MS risk. Authors showed that the rs3761548 could
be associated with MS susceptibility, especially in Asians. However, such meta-analysis
has several biases, including the low number of studies included. Additionally, four out
of five studies were performed on Asians. Thus, the results may do not apply to different
ethnic populations, such as Europeans. Indeed, it is well recognized that ethnicity affects
the genetic background, resulting in contrasting results among different populations. The
inconsistency of the results among the different studies on the association of FOXP3 SNPs
and MS could be due to several reasons, including the sample size, the genotyping methods
(restriction fragment length polymorphism, real-time PCR), and the selection of controls
(hospital-based controls, community-based controls, healthy blood donors) [48]. To the
best of our knowledge, this is the first study evaluating the role of FOXP3 polymorphisms
on MS risk in an Italian population and the first investigating the possible influence of
GATA3 polymorphism in MS.

Limitations of this study are small sample size, case-control design, the lack of match
between cases and controls, the lack of sample size estimation prior to starting the study,
and the lack of assessment of cytokines in order to characterize better the complex relation-
ship among FOXP3, chemical mediators and MS.

5. Conclusions

It is sound to investigate FOXP3, and GATA3 SNPs within the contest of immune-
mediated diseases as MS since functional alterations of these proteins could be involved in
the development of such diseases. FOXP3 and GATA3 exert immune suppressive activity;
however, some of their gene variants have been shown to impair immune-suppressive
activity, thus contributing to the development of autoimmune diseases. In this case-control
study, we evaluated the possible role of two SNPs of the FOXP3 gene, the rs3761547 and
rs3761548, and an SNP of the GATA3 gene, rs3824662, as a susceptibility risk factor for
MS. We did not find an association between the selected SNPs and MS risk. However, it
is possible that several factors, including the small sample size, could have influenced
our results. Therefore, we cannot draw final conclusions on the role of GATA3 and
FOXP3 polymorphisms on the MS risk. Accordingly, it is worth studying FOXP3 and
GATA3 SNPs in larger populations to understand better whether they could have a role in
MS susceptibility.
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