27 research outputs found

    Photosynthetic responses to salinity in two obligate halophytes: Sesuvium portulacastrum and Tecticornia indica

    Get PDF
    Abstract Seedlings of the obligate halophytes Sesuvium portulacastrum L. and Tecticornia indica (Willd.) subsp. indica were grown with 0, 200, or 400 mM NaCl for 13 weeks to investigate whether salt tolerance was related to maintenance of adequate photosynthetic activity and pigment equipment. Both species showed growth optimum at 200 mM NaCl and better tissue hydration under salinity but different photosynthetic response to salinity. CO2 assimilation rate and stomatal conductance of S. portulacastrum were highest at 200 mM NaCl, while in T. indica they decreased with salinity. Pigment content increased under salinity in both species. The de-epoxidation state in S. portulacastrum suggests the need for energy dissipation at 400 mM NaCl, while its salt-induced decline in T. indica, despite the reduced photochemistry, suggests the involvement of adaptive mechanisms other than the xanthophyll cycle

    Ultraviolet-B radiation applied to detached peach fruit: A study of free radical generation by EPR spin trapping

    No full text
    In peaches, phenolic compounds are the major sources of antioxidants, and cyanidin-3-. O-glucoside is the main anthocyanin present, above all in the skin. Anthocyanin content has been shown to increase after UV-B irradiation, which may be very harmful for all biological organisms due to the induction of the generation of reactive oxygen species (ROS). Peach fruits (cv. 'Suncrest') were exposed during post-harvest to supplemental ultraviolet-B radiation. A spin-trapping technique was used to monitor the generation of free radicals under UV-B, and 5-(diethoxy-phosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) was used as the spin trap. The flesh of peaches was essentially unaffected by the treatment, whereas the skin was responsive at the end of the treatment, accumulating ascorbate, flavonoids, cyanidin-3-. O-glucoside, and showing a higher antioxidant activity. The levels of stable free radicals were also lower at the end of treatment. Carbon-centred radicals contributed the most to the total amounts of free radicals, whereas hydroxyl radicals and oxygen-centred free radicals contributed minimally. The carbon-centred free radical identified was the same as the one obtained after irradiation of authentic cyanidin-3-. O-glucoside. During UV-B treatment cyanidin-3-. O-glucoside increased and was capable of radicalization protecting the other organic molecules of the cell from oxidation. ROS, among which hydroxyl radicals, were thus maintained to minimal levels. This ability of cyanidin-3-. O-glucoside displayed the mechanism underlined the tolerance to UV-B irradiation indicating that shelf life can be prolonged by the presence of anthocyanins. Thus, UV-B technique results a good approach to induce antioxidant production in peach fruits increasing their nutraceutical propertie
    corecore