21 research outputs found
Nicotinamide inhibits melanoma in vitro and in vivo
Background: Even though new therapies are available against melanoma, novel approaches are needed to overcome resistance and high-toxicity issues. In the present study the anti-melanoma activity of Nicotinamide (NAM), the amide form of Niacin, was assessed in vitro and in vivo. Methods: Human (A375, SK-MEL-28) and mouse (B16-F10) melanoma cell lines were used for in vitro investigations. Viability, cell-death, cell-cycle distribution, apoptosis, Nicotinamide Adenine Dinucleotide+ (NAD+), Adenosine Triphosphate (ATP), and Reactive Oxygen Species (ROS) levels were measured after NAM treatment. NAM anti-SIRT2 activity was tested in vitro; SIRT2 expression level was investigated by in silico transcriptomic analyses. Melanoma growth in vivo was measured in thirty-five C57BL/6 mice injected subcutaneously with B16-F10 melanoma cells and treated intraperitoneally with NAM. Interferon (IFN)-γ-secreting murine cells were counted with ELISPOT assay. Cytokine/chemokine plasmatic levels were measured by xMAP technology. Niacin receptors expression in human melanoma samples was also investigated by in silico transcriptomic analyses. Results: NAM reduced up to 90% melanoma cell number and induced: I) accumulation in G1-phase (40% increase), ii) reduction in S- A nd G2-phase (about 50% decrease), iii) a 10-fold increase of cell-death and 2.5-fold increase of apoptosis in sub-G1 phase, iv) a significant increase of NAD+, ATP, and ROS levels, v) a strong inhibition of SIRT2 activity in vitro. NAM significantly delayed tumor growth in vivo (p ≤ 0.0005) and improved survival of melanoma-bearing mice (p ≤ 0.0001). About 3-fold increase (p ≤ 0.05) of Interferon-gamma (IFN-γ) producing cells was observed in NAM treated mice. The plasmatic expression levels of 6 cytokines (namely: Interleukin 5 (IL-5), Eotaxin, Interleukin 12 (p40) (IL12(p40)), Interleukin 3 (IL-3), Interleukin 10 (IL-10) and Regulated on Activation Normal T Expressed and Secreted (RANTES) were significantly changed in the blood of NAM treated mice, suggesting a key role of the immune response. The observed inhibitory effect of NAM on SIRT2 enzymatic activity confirmed previous evidence; we show here that SIRT2 expression is significantly increased in melanoma and inversely related to melanoma-patients survival. Finally, we show for the first time that the expression levels of Niacin receptors HCAR2 and HCAR3 is almost abolished in human melanoma samples. Conclusion: NAM shows a relevant anti-melanoma activity in vitro and in vivo and is a suitable candidate for further clinical investigations
Toll-iike receptor-3 activation enhances malignant traits in human breast cancer cells through hypoxia-inducible factor-1α
Background/Aim: Hypoxia-inducible factor 1 (HIF1) inhibitors have been proposed as therapeutic agents for several tumor types. HIF1α is induced by hypoxia and by pathogens in normoxia through toll-like receptors (TLRs). The TLR3 activator polyinosinic:polycytidylic acid [poly(I:C)] induces apoptosis in various types of cancer but not in the most aggressive breast cancer cell lines. We hypothesized that the failure of TLR3 stimulation to induce apoptosis in these cells might be due to an elevated HIF1α level and this link might be exploited. Materials and Methods: Poly(I:C)-induced signaling pathway and expression of HIF1α and HIF1α targets were studied in MDA MB-231 and MCF-7 breast cancer cell lines by western blot. Flow cytometry was used for apoptotic responses and vasculogenic mimicry as bioassay. Results: Poly(I:C) increased expression of HIF1α and its targets BCL2 apoptosis regulator and c-MYC. Moreover, using pharmacological or genetic HIF1 inhibition, reduction of poly(I:C)-induced expression of HIF1α was paralleled by lowering of c-MYC and increased sensitivity to poly(I:C)-induced apoptosis, demonstrating the crucial role of this factor. We provide the first evidence in breast cancer cells that TLR3 stimulation induces HIF1αdependent vasculogenic mimicry. By using specific inhibitors, we identified a signaling cascade upstream of HIF1α induction. Conclusion: Combined treatment with poly(I:C) and HIF1 inhibitors deserves consideration as an effective strategy in breast cancer therapy
Investigating serum and tissue expression identified a cytokine/chemokine signature as a highly effective melanoma marker
The identification of reliable and quantitative melanoma biomarkers may help an early diagnosis and may directly affect melanoma mortality and morbidity. The aim of the present study was to identify effective biomarkers by investigating the expression of 27 cytokines/chemokines in melanoma compared to healthy controls, both in serum and in tissue samples. Serum samples were from 232 patients recruited at the IDI-IRCCS hospital. Expression was quantified by xMAP technology, on 27 cytokines/chemokines, compared to the control sera. RNA expression data of the same 27 molecules were obtained from 511 melanoma-and healthy-tissue samples, from the GENT2 database. Statistical analysis involved a 3-step approach: analysis of the single-molecules by Mann–Whitney analysis; analysis of paired-molecules by Pearson correlation; and profile analysis by the machine learning algorithm Support Vector Machine (SVM). Single-molecule analysis of serum expression identified IL-1b, IL-6, IP-10, PDGF-BB, and RANTES differently expressed in melanoma (p < 0.05). Expression of IL-8, GM-CSF, MCP-1, and TNF-α was found to be significantly correlated with Breslow thickness. Eotaxin and MCP-1 were found differentially expressed in male vs. female patients. Tissue expression analysis identified very effective marker/predictor genes, namely, IL-1Ra, IL-7, MIP-1a, and MIP-1b, with individual AUC values of 0.88, 0.86, 0.93, 0.87, respectively. SVM analysis of the tissue expression data identified the combination of these four molecules as the most effective signature to discriminate melanoma patients (AUC = 0.98). Validation, using the GEPIA2 database on an additional 1019 independent samples, fully confirmed these observations. The present study demonstrates, for the first time, that the IL-1Ra, IL-7, MIP-1a, and MIP-1b gene signature discriminates melanoma from control tissues with extremely high efficacy. We therefore propose this 4-molecule combination as an effective melanoma marker
Transfection of bovine cell culture with bovine herpesvirus 4 DNA obtained by cell nuclear extraction
Likelihood-type confidence regions for optimal sensitivity and specificity of a diagnostic test
New methods are proposed that provide approximate joint confidence regions for the optimal sensitivity and specificity of a diagnostic test, i.e., sensitivity and specificity corresponding to the optimal cutpoint as defined by the Youden index criterion. Such methods are semi-parametric or non-parametric and attempt to overcome the limitations of alternative approaches. The proposed methods are based on empirical likelihood pivots, giving rise to likelihood-type regions with no predetermined constraints on the shape and automatically range-respecting. The proposal covers three situations: the binormal model, the binormal model after the use of Box-Cox transformations and the fully non-parametric model. In the second case, it is also shown how to use two different transformations, for the healthy and the diseased subjects. The finite sample behaviour of our methods is investigated using simulation experiments. The simulation results also show the advantages offered by our methods when compared with existing competitors. Illustrative examples, involving three real datasets, are also provided
