320 research outputs found

    A Link between Parental Psychopathology and Preschool Depression: Take Care of Parents to Take Care of Children

    Get PDF
    There is a lot of evidence in the literature showing that early-onset depression determines an emotional and cognitive vulnerability for psychiatric disorders in subsequent years. Aims: The first aim of this outcome research was to analyze the impact of parental support treatment in a sample of depressed preschool children divided into two groups of comparison (under-reactive and over-reactive) through evolution in the Clinical Global Impression (CGI). The second aim was to analyze the correlation between the presence of parental psychopathology and the severity of children's disorders. Methods: Our clinical sample consisted of 32 preschool-age children with a final diagnosis of MDD. The children's assessment included a psychiatric assessment to establish a diagnosis of MDD, confirmed by means of a semi-structured interview, which was administered again one month after the end of parental treatment. All the parents began a six-month parent training treatment conducted by experienced child psychiatrists, whereas children were not treated. During this period, the Clinical Global Impression Scale (CGI) was filled out monthly in order to observe the evolution of the children's disorders. Results: Post-hoc tests showed a significant difference from before the treatment to after the treatment only in the over-reactive group (p = 0.00). Regarding parental psychiatric disorders, in the over-reactive group, only 3 children had no parents with psychopathology. In the under-reactive group, no child lacked a parent with psychopathology. Conclusion: Parent training treatment seems to be a valid intervention to improve preschool depression, especially in over-reactive groups, and to prevent dysfunctional parental styles connected to parental psychopathology

    A novel stepwise micro-TESE approach in non obstructive azoospermia

    Get PDF
    Background: The purpose of the study was to investigate whether micro-TESE can improve sperm retrieval rate (SRR) compared to conventional single TESE biopsy on the same testicle or to contralateral multiple TESE, by employing a novel stepwise micro-TESE approach in a population of poor prognosis patients with non-obstructive azoospermia (NOA). Methods: Sixty-four poor prognosis NOA men undergoing surgical testicular sperm retrieval for ICSI, from March 2007 to April 2013, were included in this study. Patients inclusion criteria were a) previous unsuccessful TESE, b) unfavorable histology (SCOS, MA, sclerahyalinosis), c) Klinefelter syndrome. We employed a stepwise micro-TESE consisting three-steps: 1) single conventional TESE biopsy; 2) micro-TESE on the same testis; 3) contralateral multiple TESE. Results: SRR was 28.1 % (18/64). Sperm was obtained in both the initial single conventional TESE and in the following micro-TESE. The positive or negative sperm retrieval was further confirmed by a contralateral multiple TESE, when performed. No significant pre-operative predictors of sperm retrieval, including patients’ age, previous negative TESE or serological markers (LH, FSH, inhibin B), were observed at univariate or multivariate analysis. Micro-TESE (step 2) did not improve sperm retrieval as compared to single TESE biopsy on the same testicle (step 1) or multiple contralateral TESE (step 3). Conclusions: Stepwise micro-TESE could represent an optimal approach for sperm retrieval in NOA men. In our view, it should be offered to NOA patients in order to gradually increase surgical invasiveness, when necessary. Stepwise micro-TESE might also reduce the costs, time and efforts involved in surgery

    Analysis of infected human mononuclear cells by atomic force microscopy

    Get PDF
    The surfaces of the human lymphoid cells of the line H9 chronically infected with the Human Immunodeficiency Virus HIV-1, and of human monocytes acutely infected in vitro with Mycobacterium Tuberculosis (MTB) were dried, fixed and imaged with atomic force microscopy (AFM). These images were compared with those of non-infected samples. Dried and fixed samples of infected cells can be distinguished from non-infected ones by AFM technology due to their different surface structures and by the presence of pathogenic (viz al or mycobacterial) agents on the cell surface

    Graph Neural Networks for temporal graphs: State of the art, open challenges, and opportunities

    Get PDF
    Graph Neural Networks (GNNs) have become the leading paradigm for learning on (static) graph-structured data. However, many real-world systems are dynamic in nature, since the graph and node/edge attributes change over time. In recent years, GNN-based models for temporal graphs have emerged as a promising area of research to extend the capabilities of GNNs. In this work, we provide the first comprehensive overview of the current stateof-the-art of temporal GNN, introducing a rigorous formalization of learning settings and tasks and a novel taxonomy categorizing existing approaches in terms of how the temporal aspect is represented and processed. We conclude the survey with a discussion of the most relevant open challenges for the field, from both research and application perspectives

    Multitask Learning on Graph Neural Networks: Learning Multiple Graph Centrality Measures with a Unified Network

    Full text link
    The application of deep learning to symbolic domains remains an active research endeavour. Graph neural networks (GNN), consisting of trained neural modules which can be arranged in different topologies at run time, are sound alternatives to tackle relational problems which lend themselves to graph representations. In this paper, we show that GNNs are capable of multitask learning, which can be naturally enforced by training the model to refine a single set of multidimensional embeddings Rd\in \mathbb{R}^d and decode them into multiple outputs by connecting MLPs at the end of the pipeline. We demonstrate the multitask learning capability of the model in the relevant relational problem of estimating network centrality measures, focusing primarily on producing rankings based on these measures, i.e. is vertex v1v_1 more central than vertex v2v_2 given centrality cc?. We then show that a GNN can be trained to develop a \emph{lingua franca} of vertex embeddings from which all relevant information about any of the trained centrality measures can be decoded. The proposed model achieves 89%89\% accuracy on a test dataset of random instances with up to 128 vertices and is shown to generalise to larger problem sizes. The model is also shown to obtain reasonable accuracy on a dataset of real world instances with up to 4k vertices, vastly surpassing the sizes of the largest instances with which the model was trained (n=128n=128). Finally, we believe that our contributions attest to the potential of GNNs in symbolic domains in general and in relational learning in particular.Comment: Published at ICANN2019. 10 pages, 3 Figure

    Characterisation of submarine depression trails driven by upslope migrating cyclic steps: Insights from the Ceará Basin (Brazil)

    Get PDF
    Circular to elliptical topographic depressions, isolated or organized in trails, have been observed on the modern seabed in different contexts and water depths. Such features have been alternatively interpreted as pockmarks generated by fluid flow, as sediment waves generated by turbidity currents, or as a combination of both processes. In the latter case, the dip of the slope has been hypothesized to control the formation of trails of downslope migrating pockmarks. In this study, we use high-quality 3D seismic data from the offshore Ceará Basin (Equatorial Brazil) to examine vertically stacked and upslope-migrating trails of depressions visible at the seabed and in the subsurface. Seismic reflection terminations and stratal architecture indicate that these features are formed by cyclic steps generated by turbidity currents, while internal amplitude anomalies point to the presence of fluid migration. Amplitude Versus Offset analysis (AVO) performed on partial stacks shows that the investigated anomalies do not represent hydrocarbon indicators. Previous studies have suggested that the accumulation of permeable and porous sediments in the troughs of vertically stacked cyclic steps may create vertical pathways for fluid migration, and we propose that this may have facilitated the upward migration of saline pore water due to fluid buoyancy. The results of this study highlight the importance of gravity-driven processes in shaping the morphology of the Ceará Basin slope and show how non-hydrocarbon fluids may interact with vertically stacked cyclic steps

    Acetaldehyde and parkinsonism: role of CYP450 2E1.

    Get PDF
    The present review update the relationship between acetaldehyde (ACE) and parkinsonism with a specific focus on the role of P450 system and CYP 2E1 isozyme particularly. We have indicated that ACE is able to enhance the parkinsonism induced in mice by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin able to damage the nigrostriatal dopaminergic pathway. Similarly diethyldithiocarbamate, the main metabolite of disulfiram, a drug widely used to control alcoholism, diallylsulfide (DAS) and phenylisothiocyanate also markedly enhance the toxin-related parkinsonism. All these compounds are substrate/inhibitors of CYP450 2E1 isozyme. The presence of CYP 2E1 has been detected in the dopamine (DA) neurons of rodent Substantia Nigra (SN), but a precise function of the enzyme has not been elucidated yet. By treating CYP 2E1 knockout (KO) mice with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the SN induced lesion was significantly reduced when compared with the lesion observed in wild-type animals. Several in vivo and in vitro studies led to the conclusion that CYP 2E1 may enhance the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice by increasing free radical production inside the dopaminergic neurons. ACE is a good substrate for CYP 2E1 enzyme as the other substrate-inhibitors and by this way may facilitate the susceptibility of dopaminergic neurons to toxic events. The literature suggests that ethanol and/or disulfiram may be responsible for toxic parkinsonism in human and it indicates that basal ganglia are the major targets of disulfiram toxicity. A very recent study reports that there are a decreased methylation of the CYP 2E1 gene and increased expression of CYP 2E1 mRNA in Parkinson's disease (PD) patient brains. This study suggests that epigenetic variants of this cytochrome contribute to the susceptibility, thus confirming multiples lines of evidence which indicate a link between environmental toxins and P

    The factor H binding protein of Neisseria meningitidis interacts with xenosiderophores in vitro.

    Get PDF
    The factor H binding protein (fHbp) is a key virulence factor of Neisseria meningitidis that confers to the bacterium the ability to resist killing by human serum. The determination of its three-dimensional structure revealed that the carboxyl terminus of the protein folds into an eight-stranded ߠbarrel. The structural similarity of this part of the protein to lipocalins provided the rationale for exploring the ability of fHbp to bind siderophores. We found that fHbp was able to bind in vitro siderophores belonging to the cathecolate family and mapped the interaction site by nuclear magnetic resonance. Our results indicated that the enterobactin binding site was distinct from the site involved in binding to human factor H and stimulates new hypotheses about possible multiple activities of fHbp.Full Tex

    NarE: a novel ADP-ribosyltransferase from Neisseria meningitidis.

    Get PDF
    Mono ADP-ribosyltransferases (ADPRTs) are a class of functionally conserved enzymes present in prokaryotic and eukaryotic organisms. In bacteria, these enzymes often act as potent toxins and play an important role in pathogenesis. Here we report a profile-based computational approach that, assisted by secondary structure predictions, has allowed the identification of a previously undiscovered ADP-ribosyltransferase in Neisseria meningitidis (NarE). NarE shows structural homologies with E. coli heat-labile enterotoxin (LT) and cholera toxin (CT) and possesses ADP-ribosylating and NAD-glycohydrolase activities. As in the case of LT and CT, NarE catalyses the transfer of the ADP-ribose moiety to arginine residues. Despite the absence of a signal peptide, the protein is efficiently exported into the periplasm of Neisseria. The narE gene is present in 25 out of 43 strains analysed, is always present in ET-5 and Lineage 3 but absent in ET-37 and Cluster A4 hypervirulent lineages. When present, the gene is 100% conserved in sequence and is inserted upstream of and co-transcribed with the lipoamide dehydrogenase E3 gene. Possible roles in the pathogenesis of N. meningitidis are discussed

    Structural basis for cooperativity of human monoclonal antibodies to meningococcal factor H-binding protein

    Get PDF
    Monoclonal antibody (mAb) cooperativity is a phenomenon triggered when mAbs couples promote increased bactericidal killing compared to individual partners. Cooperativity has been deeply investigated among mAbs elicited by factor H-binding protein (fHbp), a Neisseria meningitidis surface-exposed lipoprotein and one of the key antigens included in both serogroup B meningococcus vaccine Bexsero and Trumenba. Here we report the structural and functional characterization of two cooperative mAbs pairs isolated from Bexsero vaccines. The 3D electron microscopy structures of the human mAb-fHbp-mAb cooperative complexes indicate that the angle formed between the antigen binding fragments (fAbs) assume regular angle and that fHbp is able to bind simultaneously and stably the cooperative mAbs pairs and human factor H (fH) in vitro. These findings shed light on molecular basis of the antibody-based mechanism of protection driven by simultaneous recognition of the different epitopes of the fHbp and underline that cooperativity is crucial in vaccine efficacy
    corecore