18 research outputs found

    Monthly macrophyte surveys of the CEH River Lambourn Observatory at Boxford

    Get PDF
    This study has resulted in the collection of a unique dataset of seasonal macrophyte growth over a six year period, encompassing extreme levels of flow both high and low. Although not analysed the results of the surveys are presented in this report. The data collected would enable subsequent investigation of the impact of weed cuts on the composition, density, cover and recovery time of these species and the relationship between macrophyte growth, hydraulic roughness, flow regimes and sediment transport/deposition

    SNIFFER WFD119: Enhancement of the River Invertebrate Classification Tool (RICT)

    Get PDF
    EXECUTIVE SUMMARY Project funders/partners: Environment Agency (EA), Northern Ireland Environment Agency (NIEA), Scotland & Northern Ireland Forum for Environmental Research (SNIFFER), Scottish Environment Protection Agency (SEPA) Background to research The Regulatory Agencies in the UK (the Environment Agency; Scottish Environment Protection Agency; and the Northern Ireland Environment Agency) now use the River Invertebrate Classification Tool (RICT) to classify the ecological quality of rivers for Water Framework Directive compliance monitoring. RICT incorporates RIVPACS IV predictive models and is a highly capable tool written in a modern software programming language. While RICT classifies waters for general degradation and organic pollution stress, producing assessments of status class and uncertainty, WFD compliance monitoring also requires the UK Agencies to assess the impacts of a wide range of pressures including hydromorphological and acidification stresses. Some of these pressures alter the predictor variables that current RIVPACS models use to derive predicted biotic indices. This project has sought to broaden the scope of RICT by developing one or more RIVPACS model(s) that do not use predictor variables that are affected by these stressors, but instead use alternative GIS based variables that are wholly independent of these pressures. This project has also included a review of the wide range of biotic indices now available in RICT, identifying published sources, examining index performance, and where necessary making recommendations on further needs for index testing and development. Objectives of research •To remove and derive alternative predictive variables that are not affected by stressors, with particular emphasis on hydrological/acidification metric predictors. •To construct one or more new RIVPACS model(s) using stressor independent variables. •Review WFD reporting indices notably AWIC(species), LIFE (species), PSI & WHPT. Key findings and recommendations : Predictor variables and intellectual property rights : An extensive suite of new variables have been derived by GIS for the RIVPACS reference sites that have been shown to act as stressor-independent predictor variables. These include measures of stream order, solid and drift geology, and a range of upstream catchment characteristics (e.g. catchment area, mean altitude of upstream catchment, and catchment aspect). It is recommended that decisions are reached on which of the newly derived model(s) are implemented in RICT so that IPR issues for the relevant datasets can be quickly resolved and the datasets licensed. It is also recommended that licensing is sought for a point and click system (where the dataset cannot be reverse engineered) that is capable of calculating any of the time-invariant RIVPACS environmental predictor variables used by any of the newly derived (and existing) RIVPACS models, and for any potential users. New stressor-independent RIVPACS models : Using the existing predictor variables, together with new ones derived for their properties of stressor-independence, initial step-wise forward selection discriminant models suggested a range of 36 possible models that merited further testing. Following further testing, the following models are recommended for assessing watercourses affected by flow/hydromorphological and/or acidity stress: • For flow/hydromorphological stressors that may have modified width, depth and/or substrate in GB, it is suggested that a new ‘RIVPACS IV – Hydromorphology Independent’ model (Model 24) is used (this does not use the predictor variables width, depth and substratum, but includes a suite of new stressor-independent variables). • For acidity related stressors in GB, it is suggested that a new ‘RIVPACS IV – Alkalinity Independent’ model (Model 35) is used (this does not use the predictor variable alkalinity, but includes new stressor-independent variables). • For flow/hydromorphological stressors and acidity related stressors in GB, it is suggested that a new ‘RIVPACS IV – Hydromorphology & Alkalinity Independent’ model (Model 13) is used (this does not use the predictor variables width, depth, substratum and alkalinity, but includes a suite of new stressor-independent variables). • Reduced availability of appropriate GIS tools at this time has meant that no new models have been developed for Northern Ireland. Discriminant functions and end group means have now been calculated to enable any of these models to be easily implemented in the RICT software. Biotic indices : The RIVPACS models in RICT can now produce expected values for a wide range of biotic indices addressing a variety of stressors. These indices will support the use of RICT as a primary tool for WFD classification and reporting of the quality of UK streams and rivers. There are however a number of outstanding issues with indices that need to be addressed: • There is a need to develop a biotic index for assessing metal pollution. • WFD EQR banding schemes are required for many of the indices to report what is considered an acceptable degree of stress (High-Good) and what is not (Moderate, Poor or Bad). • A comprehensive objective testing process needs to be undertaken on the indices in RICT using UK-wide, large-scale, independent test datasets to quantify their index-stressor relationships and their associated uncertainty, for example following the approach to acidity index testing in Murphy et al., (in review) or organic/general degradation indices in Banks & McFarland (2010). • Following objective testing, the UK Agencies should make efforts to address any index under-performance issues that have been identified, and where necessary new work should be commissioned to modify existing indices, or develop new ones where required so that indices for all stress types meet certain minimum performance criteria. • Testing needs to be done to examine index-stressor relationships with both observed index scores and RIVPACS observed/expected ratios. Work should also be done to compare the existing RIVPACS IV and the new stressor-independent models (developed in this project) as alternative sources of the expected index values for these tests. • Consideration should be given to assessing the extent to which chemical and biological monitoring points co-occur. Site-matched (rather than reach-matched) chemical and biological monitoring points would i) generate the substantial training datasets needed to refine or develop new indices and ii) generate the independent datasets for testing

    Instream and riparian implications of weed cutting in a chalk river

    Get PDF
    Macrophyte growth is extensive in the iconic chalk streams that are concentrated in southern and eastern England. Widespread and frequent weed cutting is undertaken to maintain their key functions (e.g. flood water conveyance and maintenance of viable fisheries). In this study, a multidisciplinary approach was adopted to quantify coincident physico-chemical responses (instream and riparian) that result from weed cutting and to discuss their potential implications. Three weed cuts were monitored at a site on the River Lambourn (The CEH River Lambourn Observatory) and major instream and riparian impacts were observed. Measurements clearly demonstrated how weed cutting enhanced flood flow conveyance, reduced water levels (river and wetland), increased river velocities, and mobilised suspended sediment (with associated chemicals) and reduced the capacity for its retention within the river channel. Potential implications in relation to flood risk, water resources, downstream water quality, instream and riparian ecology, amenity value of the river, and wetland greenhouse gas emissions were considered. Provided the major influence of macrophytes on instream and riparian environments is fully understood then the manipulation of macrophytes represents an effective management tool that demonstrates the great potential of working with nature

    An exploration of associations between assemblages of aquatic plant morphotypes and channel geomorphological properties within British rivers

    No full text
    Riparian vegetation, particularly trees and shrubs, can play a crucial role in the construction and turnover of fluvial landforms, but aquatic plants may also act as river ecosystem engineers. Macrophyte and environmental data from 467 British river reaches are used to explore associations between aquatic plant morphotypes and the physical characteristics of the reaches. The abundance of five plant morphotypes (mosses, linear-submerged, patch-submerged, linear emergent, branched emergent) is estimated for each river reach. Cluster analysis is applied to the abundances of the five morphotypes across the 467 reaches to identify six typical assemblages or clusters of the morphotypes. These clusters are found to be associated with statistically significantly different values of seven physical variables (altitude, slope, median annual flood discharge, channel width, mean bed sediment size, percentage cover of sand and silt on the river bed, and unit stream power). Associations between the morphotype clusters and combinations of the physical variables are explored using Canonical Correspondence Analysis and standard slope–discharge–sediment calibre–channel style graphs. Several of the morphotype clusters are discriminated by unit stream power and bed sediment size. In particular, morphotype clusters dominated by emergent and submerged macrophytes are associated with granules, sand, and finer bed sediments and are rarely found where unit stream power exceeds 100Wm−2. One cluster characterised by branched emergent species with relatively low cover of submerged morphotypes is confined to sites with unit stream power below 20Wm−2; and another cluster characterised by linear emergents with low cover of submerged morphotypes is associated with particularly extensive, fine bed sediments, suggesting possible smothering of submerged plants. In contrast, mosses reach their highest abundance in two clusters associated with the highest unit stream power and coarsest bed sediments, with the patch-submerged morphotype reaching relatively high abundance in the slightly lower energy cluster of these two. British rivers have been modified over hundreds of years such that the sample of study reaches have predominantly single-thread channels. However, the plotting positions of these reaches on established graphs describing slope–discharge–sediment calibre–channel style associations, illustrates the potential of some of these sites to develop wandering or braided forms and, in lower energy situations, the potential for aquatic plants to trap fine sediments and contribute to landform building and channel change if maintenance (cutting and dredging) of the emergent and submerged morphotypes were reduced

    Using dissolved organic matter fluorescence to identify the provenance of nutrients in a lowland catchment; the River Thames, England

    No full text
    Catchment based solutions are being sought to mitigate water quality pressures and achieve multiple benefits but their success depends on a sound understanding of catchment functioning. Novel approaches to monitoring and data analysis are urgently needed. In this paper we explore the potential of river water fluorescence at the catchment scale in understanding nutrient concentrations, sources and pathways. Data were collected from across the River Thames basin from January 2012 to March 2015. Analysing emission excitation matrices (EEMs) using both PARAFAC and optimal area averaging produced consistent results for humic-like component 1 and tryptophan-like component 4 in the absence of a subset of samples that exhibited an unusual peak; illustrating the importance of inspecting the entire EEM before using peak averaging methods. Strong relationships between fluorescence components and dissolved organic carbon (DOC), soluble reactive phosphorus (SRP), and ammonium clearly demonstrated its potential, in this study basin, as a field based surrogate for nutrients. Analysing relationships between fluorescence, catchment characteristics and boron from across the basin enabled new insights into the provenance of nutrients. These include evidence for diffuse sources of DOC from near surface hydrological pathways (i.e. soil horizons); point source inputs of nutrients from sewage effluent discharges; and diffuse contributions of nutrients from agriculture and/or sewage (e.g. septic tanks). The information gained by broad scale catchment wide monitoring of fluorescence could support catchment managers in (a) prioritising subcatchments for nutrient mitigation; (b) providing information on relative nutrient source contributions; and (c) providing evidence of the effectiveness of investment in pollution mitigation measures. The collection of high resolution fluorescence data at the catchment scale and, in particular, over shorter event timescales would complement broad scale assessments by enhancing our hydro-biogeochemical process understanding
    corecore