2 research outputs found

    An Inexpensive, Reproducible Method to Quantify Activated Sludge Foaming Potential: Validation Through Lab-Scale Studies and Year-Long Full-Scale Sampling Campaign

    Get PDF
    Activated sludge is a conventional treatment process for biochemical oxygen demand (BOD) and total suspended solids (TSS) removal at water resource recovery facilities (WRRFs). Foaming events are a common operational issue in activated sludge and can lead to decreased treatment efficiency, maintenance issues, and potential environmental health risks. Stable foaming events are caused by biological and chemical drivers (i.e., microbes and surfactants) during the aeration process. However, foaming events are difficult to predict and quantify. We present an inexpensive and easy-to-use method that can be applied at WRRFs to quantify foaming potential. Subsequently, the method was applied over a year-long full-scale study while data on microbial community composition and functional parameters associated with foaming potential were collected from activated sludge samples at South Shore Water Reclamation Facility (WRF) (Oak Creek, WI). Results from the development of the foaming potential method using linear alkylbenzene sulfonate (LAS) showed that the method was reproducible (relative standard deviation Zoogloea, Flavobacterium, Variovorax, and Bdellovibrio. This is the first report that Variovorx and Bdellovibrio relative abundance was correlated with foaming events in activated sludge. Furthermore, the foaming potential positively correlated (ρ = 0.24) with soluble total nitrogen. Characterizing foaming events through frequent sampling and monitoring of specific genera and functional parameters may allow for predictions and preemptive mitigation efforts to avoid negative consequences in the future. Practitioner Points A reproducible method to measure foaming potential in activated sludge is available. Genera Zoogloea, Flavobacterium, Variovorax, and Bdellovibrio correlated with foaming events. A year-long sampling campaign of activated sludge measuring foaming potential and microbial community composition was conducted at South Shore Water Reclamation Facility in Oak Creek, WI. More research at other facilities with this method is needed to understand links between microbes and foamin

    Activated Sludge Foaming Descriptors and Correlation to Microbial Community Composition

    No full text
    Activated sludge is a conventional treatment process for biochemical oxygen demand (BOD) and total suspended solids (TSS) removal at water resource recovery facilities (WRRFs). A common operational issue that arises is activated sludge foaming on top of the aeration basin and secondary clarifier. Foaming events in activated sludge may lead to decreased treatment efficiency, maintenance issues, and potential environmental health risks. Stable foaming events are caused by biological and chemical drivers (i.e., microbes and surfactants) during the aeration process. However, foaming events are difficult to predict and quantify. This research developed an inexpensive and easy-to-use method to quantify foaming potential that can be applied at WRRFs. Subsequently, the novel technique was applied to investigate the microbial community composition and functional parameters associated with foaming potential from activated sludge samples at South Shore Water Reclamation Facility (WRF) in Oak Creek, WI, USA. Results from the development of the foaming potential method using linear alkylbenzene sulfonate (LAS) showed that the method is reproducible (RSD \u3c 15%) and able to capture changes in foam inducing constituents. The method was tested further using wastewater samples with varying percentages of recycled activated sludge (RAS) and primary effluent (PE) from South Shore WRF that yielded standard deviations \u3c 5%, which confirmed the method was reproducible. Using full-scale activated sludge samples from South Shore WRF, the following genera were identified as being associated with foaming events: Zoogloea, Flavobacterium, Variovorx, and Bdellovibrio. This is the first report that Variovorx and Bdellovibrio are correlated with foaming events in activated sludge. Furthermore, the foaming potential positively correlated (p ≤ 0.05) with soluble total nitrogen. Characterizing foaming events through frequent sampling in activated sludge may allow for prediction and mitigation efforts by monitoring the microbial community composition and functional parameters
    corecore