63,480 research outputs found

    Aerodynamic performance of scarf inlets

    Get PDF
    A scarf inlet is characterized by having a longer lower lip than upper lip leading to both aerodynamic and acoustic advantages. Aerodynamically, a scarf inlet has higher angle of attack capability and is less likely to ingest foreign objects while the aircraft is on the ground. Acoustically, a scarf inlet provides for reduced inlet radiated noise levels below the engine as a result of upward reflection and refraction of inlet radiated noise. Results of a wind tunnel test program are presented which illustrate the aerodynamic performance of two different scarf inlet designs. Based on these results, scarf inlet performance is summarized in a way to illustrate the advantages and limitations of a scarf inlet compared to an axisymmetric inlet

    A mathematical excursion in the isochronic hills

    Get PDF

    First-order intertwining operators with position dependent mass and η\eta- weak-psuedo-Hermiticity generators

    Get PDF
    A Hermitian and an anti-Hermitian first-order intertwining operators are introduced and a class of η\eta-weak-pseudo-Hermitian position-dependent mass (PDM) Hamiltonians are constructed. A corresponding reference-target η\eta-weak-pseudo-Hermitian PDM -- Hamiltonians' map is suggested. Some η\eta-weak-pseudo-Hermitian PT -symmetric Scarf II and periodic-type models are used as illustrative examples. Energy-levels crossing and flown-away states phenomena are reported for the resulting Scarf II spectrum. Some of the corresponding η\eta-weak-pseudo-Hermitian Scarf II- and periodic-type-isospectral models (PT -symmetric and non-PT -symmetric) are given as products of the reference-target map.Comment: 11 pages, no figures, Revised/Expanded, more references added. To appear in the Int.J. Theor. Phy

    Extending Romanovski polynomials in quantum mechanics

    Full text link
    Some extensions of the (third-class) Romanovski polynomials (also called Romanovski/pseudo-Jacobi polynomials), which appear in bound-state wavefunctions of rationally-extended Scarf II and Rosen-Morse I potentials, are considered. For the former potentials, the generalized polynomials satisfy a finite orthogonality relation, while for the latter an infinite set of relations among polynomials with degree-dependent parameters is obtained. Both types of relations are counterparts of those known for conventional polynomials. In the absence of any direct information on the zeros of the Romanovski polynomials present in denominators, the regularity of the constructed potentials is checked by taking advantage of the disconjugacy properties of second-order differential equations of Schr\"odinger type. It is also shown that on going from Scarf I to Scarf II or from Rosen-Morse II to Rosen-Morse I potentials, the variety of rational extensions is narrowed down from types I, II, and III to type III only.Comment: 25 pages, no figure, small changes, 3 additional references, published versio
    corecore