6 research outputs found

    Powering a microprocessor by photosynthesis

    No full text
    Sustainable, affordable and decentralised sources of electrical energy are required to power the network of electronic devices known as the Internet of Things. Power consumption for a single Internet of Things device is modest, ranging from μW to mW, but the number of Internet of Things devices has already reached many billions and is expected to grow to one trillion by 2035, requiring a vast number of portable energy sources (e.g., a battery or an energy harvester). Batteries rely largely on expensive and unsustainable materials (e.g., rare earth elements) and their charge eventually runs out. Existing energy harvesters (e.g., solar, temperature, vibration) are longer lasting but may have adverse effects on the environment (e.g., hazardous materials are used in the production of photovoltaics). Here, we describe a bio-photovoltaic energy harvester system using photosynthetic microorganisms on an aluminium anode that can power an Arm Cortex M0+, a microprocessor widely used in Internet of Things applications. The proposed energy harvester has operated the Arm Cortex M0+ for over six months in a domestic environment under ambient light. It is comparable in size to an AA battery, and is built using common, durable, inexpensive and largely recyclable materials

    Association between miR-200c and survival of stage I epithelial ovarian cancer patients. A retrospective study on two independent tumour tissue collections.

    No full text
    BACKGROUND: International Federation of Gynecology and Obstetrics stage I epithelial ovarian cancer (EOC) has a significantly better prognosis than stage III/IV EOC, with about 80% of patients surviving at 5 years (compared with about 20% of those with stage III/IV EOC). However, 20% of patients with stage I EOC relapse within 5 years. It is therefore crucial that the biological properties of stage I EOCs are further elucidated. MicroRNAs (miRNAs) have shown diagnostic and prognostic potential in stage III and IV EOCs, but the small number of patients diagnosed with stage I EOC has so far prevented an investigation of its molecular features. We profiled miRNA expression in stage I EOC tumours to assess whether there is a miRNA signature associated with overall and progression-free survival (PFS) in stage I EOC. METHODS: We analysed tumour samples from 144 patients (29 of whom relapsed) with stage I EOC gathered from two independent tumour tissue collections (A and B), both with a median follow-up of 9 years. 89 samples from tumour tissue collection A were stratified into a training set (51 samples, 15 of which were from patients who relapsed) for miRNA signature generation, and into a validation set (38 samples, seven of which were from patients who relapsed) for signature validation. Tumour tissue collection B (55 samples, seven of which were from patients who relapsed) was used as an independent test set. The Cox proportional hazards model and the log-rank test were used to assess the correlation of quantitative reverse transcription PCR (qRT-PCR)-validated miRNAs with overall survival and PFS. FINDINGS: A signature of 34 miRNAs associated with survival was generated by microarray analysis in the training set. In both the training set and validation set, qRT-PCR analysis confirmed that 11 miRNAs (miR-214, miR-199a-3p, miR-199a-5p, miR-145, miR-200b, miR-30a, miR-30a*, miR-30d, miR-200c, miR-20a, and miR-143) were expressed differently in relapsers compared with non-relapsers. Three of these miRNAs (miR-200c, miR-199a-3p, miR-199a-5p) were associated with PFS, overall survival, or both in multivariate analysis. qRT-PCR analysis in the test set confirmed the downregulation of miR-200c in relapsers compared with non-relapsers, but not the upregulation of miR-199a-3p and miR-199a-5p. Multivariate analysis confirmed that downregulation of miR-200c in the test set was associated with overall survival (HR 0\ub7094, 95% CI 0\ub7012-0\ub7766, p=0\ub70272) and PFS (0\ub7035, 0\ub7004-0\ub7311; p=0\ub70026), independent of clinical covariates. INTERPRETATION: miR-200c has potential as a predictor of survival, and is a biomarker of relapse, in stage I EOC
    corecore