2,738 research outputs found

    The electronic band structure and optical properties of boron arsenide

    Get PDF
    We compute the electronic band structure and optical properties of boron arsenide using the relativistic quasiparticle self-consistent GWGW approach, including electron-hole interactions through solution of the Bethe-Salpeter equation. We also calculate its electronic and optical properties using standard and hybrid density functional theory. We demonstrate that the inclusion of self-consistency and vertex corrections provides substantial improvement in the calculated band features, in particular when comparing our results to previous calculations using the single-shot GWGW approach and various DFT methods, from which a considerable scatter in the calculated indirect and direct band gaps has been observed. We find that BAs has an indirect gap of 1.674 eV and a direct gap of 3.990 eV, consistent with experiment and other comparable computational studies. Hybrid DFT reproduces the indirect gap well, but provides less accurate values for other band features, including spin-orbit splittings. Our computed Born effective charges and dielectric constants confirm the unusually covalent bonding characteristics of this III-V system.Comment: 7 pages, 3 figure

    Self-regulation mechanism for charged point defects in hybrid halide perovskites

    Full text link
    Hybrid halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) exhibit unusually low free carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that the origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4% at room temperature. This behaviour, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance

    Exploring battery cathode materials in the Li-Ni-O phase diagrams using structure prediction

    Get PDF
    The Li-Ni-O phase diagram contains several electrochemically active ternary phases. Many compositions and structures in this phase space can easily be altered by (electro-)chemical processes, yielding many more (meta-)stable structures with interesting properties. In this study, we use ab initio random structure searching (AIRSS) to accelerate materials discovery of the Li-Ni-O phase space. We demonstrate that AIRSS can efficiently explore structures (e.g. LiNiO2) displaying dynamic Jahn-Teller effects. A thermodynamically stable Li2Ni2O3 phase which reduces the thermodynamic stability window of LiNiO2 was discovered. AIRSS also encountered many dynamically stable structures close to the convex hull. Therefore, we confirm the presence of metastable Li-Ni-O phases by revealing their structures and properties. This work will allow Li-Ni-O phases to be more easily identified in future experiments and help to combat the challenges in synthesizing Li-Ni-O phases

    Understanding the electronic structure of Y2Ti2O5S2 for green hydrogen production: a hybrid- DFT and GW study

    Get PDF
    Combined hybDFT and GW study reveals surface properties and optoelectronic behaviour of Y2Ti2O5S2 for green hydrogen production
    • …
    corecore