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Abstract

The Li-stuffed garnets LixM2M
′
3O12 are promising Li-ion solid electrolytes with po-

tential use in solid-state batteries. One strategy for optimising ionic conductivities in

these materials is to tune lithium stoichiometries through aliovalent doping, which is of-

ten assumed to produce proportionate numbers of charge-compensating Li vacancies.

The native defect chemistry of the Li-stuffed garnets, and their response to doping,

however, are not well understood, and it is unknown to what degree a simple vacancy-

compensation model is valid. Here, we report hybrid density-functional–theory calcu-

lations of a broad range of native defects in the prototypical Li-garnet Li7La3Zr2O12.
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We calculate equilibrium defect concentrations as a function of synthesis conditions,

and model the response of these defect populations to extrinsic doping. We predict

a rich defect chemistry that includes Li and O vacancies and interstitials, and signifi-

cant numbers of cation-antisite defects. Under reducing conditions, O vacancies act as

colour-centres by trapping electrons. We find that supervalent (donor) doping does not

produce charge compensating Li vacancies under all synthesis conditions; under Li-rich

/ Zr-poor conditions the dominant compensating defects are LiZr antisites, and Li sto-

ichiometries strongly deviate from those predicted by simple “vacancy compensation”

models.

Introduction

A global transition to low-carbon primary energy sources, such as solar and wind, requires

complementary advances in effective secondary–energy-storage technologies. Lithium-ion

batteries are a hugely successful energy-storage technology, but the performance of com-

mercial batteries is limited by the use of conventional liquid electrolytes. These contain

flammable organic solvents with narrow electrochemical stability windows, which presents a

safety risk and precludes the use of energy-dense high-voltage electrodes.1 One proposal to

address these issues is to replace conventional liquid electrolytes with electrochemically sta-

ble, non-flammable ceramics, to allow the development of all-solid-state batteries with higher

energy densities and improved safety characteristics.2–7 An ideal lithium-ion solid electrolyte

should have a wide electrochemical stability window, a negligible electronic conductivity,

and a high ionic conductivity.8 While a number of families of promising solid lithium-ion

conductors are known,2 it is generally unknown to what extent these target properties, such

as high ionic conductivities, can be achieved by chemical tuning: for example, by doping

with chemical substituents or by varying synthesis conditions.

One promising family of solid lithium-ion electrolytes are the lithium-stuffed garnets,

LixM3M
′
2O12.

3,9 These materials have ionic conductivities reportedly as high as∼1× 10−3 S/cm10

2



and wide electrochemical stability windows,11 allowing their incorporation in battery sys-

tems.12–15 By varying the cations M and M ′, many different compositions can be synthesised,

with a broad range of ionic conductivities.3 Identifying chemical compositions with optimal

conductivities, however, remains a challenge, and requires understanding both lattice-cation

substitution and lithium stoichiometry, and how these compositional parameters together

affect lithium transport.16–21

One strategy for optimising the ionic conductivity of the lithium-conducting garnets is

aliovalent doping, which is often assumed to allow control of lithium stoichiometry through

the formation of charge-compensating lithium defects.22 Aliovalent doping of garnets gained

interest following the inadvertent Al-doping of Li7La3Zr2O12 (LLZO), which produced a

dramatic increase in room-temperature ionic conductivity by stabilising the highly conduct-

ing cubic phase23,24—normally only observed at temperatures above 600 K for stoichiometric

LLZO—with respect to the poorly conducting tetragonal phase.25,26 This effect was explained

by aluminium substituting for lithium,27 causing charge-compensating lithium vacancies to

form, with this change in lithium stoichiometry stabilising the cubic phase.19,28 Subsequent

efforts to optimise the ionic conductivity of doped LLZO have seen a number of superva-

lent (donor) dopants proposed.29 These include other small cations, such as gallium, that

directly substitute lithium;30–32 larger cations, such as tantalum or niobium, that substitute

zirconium or lanthanum on the M or M ′ sites;10 and donor anions, such as fluorine, that

substitute oxygen.33

Donor doping is usually assumed to affect lithium stoichiometry by causing the formation

of charge-compenstating lithium vacancies, e.g. for a trivalent cation such as Al3+ substitut-

ing for monovalent Li+, charge neutrality considerations suggest that31,32

[Al••Li ] = 2[V ′Li] (1)

(using Kröger-Vink notation, where Aq
B represents species A at site B, with relative charge
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q).34 Although this direct–charge-compensation model has an attractive conceptual simplic-

ity, it ignores other defect species that may form under specific synthesis conditions or in

response to doping. A number of studies have suggested that oxygen vacancies may play a

significant role in the defect chemistry of LLZO,18,35–37 and Kubicek et al. have confirmed

the presence of oxygen vacancies in a range of nominal “LLZO” compositions, using isotope-

exchange techniques, with estimated O-vacancy concentrations as high as 2.5%.36 Because

oxygen vacancies can act as electronic donors, their presence has been proposed to affect

lithium stoichiometries through a charge-compensating “Schottky pair” mechanism:

2Li×Li + O×O ⇀↽ 2V ′Li + V ••O . (2)

This defect equilibrium suggests that synthesis conditions that promote oxygen vacancy

formation; e.g. high temperatures or low oxygen–partial-pressures; may produce samples

with reduced lithium stoichiometries. Furthermore, the appearance of V ′Li in both Eqns. 1

and 2 raises the possibility of coupling between the intrinsic defect chemistry of lithium-

stuffed garnets and their response to donor doping.38

The example above considers only three defect species, yet illustrates the difficulty in

using simple charge-compensation models to understand how defect concentrations are re-

lated. In practice, other native defects may also be present in significant numbers, and these

should also be included in any thermodynamic model of defect populations. In materials

such as LLZO, cationic lattice defects, such as La and Zr vacancies, are often assumed to be

negligible;37 but this is not a priori guaranteed under all synthesis conditions. In addition,

simple defect–charge-compensation models usually assume defects exist in only one formal

charge state—e.g. −1 for Li vacancies, or +2 for O vacancies—39 when in reality defects

may adopt a range of charge states as a function of Fermi energy.40–43 A more complete

thermodynamic defect model should therefore consider a broad range of native defects in all

accessible charge states. The defect chemistry and doping response are now not described
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by a single defect–charge-compensation equation, such as Eqns. 1 or 2, but instead by a set

of equations that describe the defect populations, to be solved self-consistently under the

constraint of thermodynamic equilibrium.40,44–46

To better understand the native defect chemistry and doping response of lithium-garnet

solid-electrolytes, we have performed a computational study of a broad range of defects in

the prototypical system LLZO. We have used hybrid density functional theory (DFT) to

calculate formation energies for a range of intrinsic defects, including lithium and oxygen

vacancies and interstitials, lanthanum and zirconium vacancies, and cation anti-sites. These

defect formation energies are used to construct a self-consistent thermodynamic model of

defect concentrations as a function of synthesis conditions. We find a rich defect chemistry

that includes not just lithium and oxygen defects, but also significant numbers of cation-

antisite defects. Oxygen vacancies exhibit 0, +1, and +2 charge states, and under reducing

conditions act as colour-centres by trapping electrons. We have also modelled the response

to supervalent (donor) doping, and find that lithium vacancies are not the dominant com-

pensating acceptor defects under all synthesis conditions; under Li-rich / Zr-poor conditions

donor doping is primarily compensated by LiZr antisites, and lithium stoichiometries can

strongly deviate from the values predicted by the simple “vacancy compensation” model

(Eqn. 1).

Methods

At thermodynamic equilibrium, the concentration of a defect X in charge-state q is given by

[Xq] = NX gX,q exp

(
−∆EXq

f

kT

)
, (3)

where NX is the density of sites available to form X, gX,q is the degeneracy of the defect state

(e.g. spin degeneracy), k is the Boltzmann constant, and T is the temperature. ∆EXq

f is the

free energy of formation of defect X in charge-state q. For defects with q 6= 0, the formation
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energy depends on the Fermi energy, i.e. the electron chemical potential. Because the energy

to add or remove electrons depends on the defects present, calculating equilibrium defect

concentrations consists of finding a self-consistent solution to Eqn. 3 for all defect species,

under the constraint of overall charge neutrality. The net charge density at a given Fermi

energy, ρ(EF), is given by a sum over all charged defects, plus contributions from electrons

and holes occupying conduction and valence bands respectively:

ρ(EF) =
∑
Xq

q[Xq] + p0 − n0. (4)

Electron and hole concentrations (n0 and p0 respectively) are given by

n0 =

∫ ∞
0

1

e(E−EF)/kT + 1
g(E) dE, (5)

p0 =

∫ ∞
0

1− 1

e(E−EF)/kT + 1
g(E) dE, (6)

where g(E) is the density of states (DOS) for the system under consideration.

Thermodynamic defect concentrations under extrinsic doping can be calculated by in-

cluding fixed concentrations of each dopant species and similarly solving to find the Fermi

energy that gives overall charge neutrality. Introducing an aliovalent dopant adds, or re-

moves, electrons from the system, depending on the effective relative charge of the resulting

defect. For the case of a dopant defect M , with relative charge r and fixed concentration

[M r], the net charge density, ρ, is given by

ρ(EF, r[M
r]) =

∑
Xq

q[Xq] + p0 − n0 + r[M r]. (7)

To restore charge neutrality, the native defect concentrations necessarily change from those

in the undoped system. This doping response does not depend explicitly on the dopant

species and insertion site, but only on the product r[M r]. The response predicted for an

effective +2 dopant, e.g. AlLi, is therefore equivalent to that for an effective +1 dopant, e.g.
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TaZr or FO, with a concentration scaling of ×2.

This approach assumes that direct defect–dopant interactions are negligible when com-

pared to the response to the Fermi-level shift arising from aliovalent doping. There is some

evidence for explicit dopant–defect interactions in LLZO that vary with the identity of the

dopant species. Molecular dynamics simulations by Mottet et al. have revealed changes in

the average distribution of Li ions at sites adjacent to MoZr dopants,21 while DFT calcula-

tions by Rettenwander et al. have predicted that introducing Al3+ versus Ga3+ at tetrahedral

lithium sites increases the site-occupation energy for Li at the nearest tetrahedral sites by

2 meV and 12 meV respectively. Daza et al. performed simulations of Al- and Ga-doped

LLZO at low temperature (233 K) and observed distinct differences in Li distributions for

Al- versus Ga-doping,47 although this effect decreased at higher temperature (313 K). While

these effects are potentially significant when considering Li diffusion behaviour in doped

systems at typical operating temperatures, under high-temperature synthesis conditions we

expect direct dopant–defect interactions to only have a small effect on equilibrium defect

populations in as-formed garnets.

We have calculated defect formation energies using periodic hybrid density-functional-

theory (DFT), within the Zhang and Northrup formalism,40 where the formation energy of

defect X in charge state q is given by

∆EXq

f = EXq

tot − Ebulk
tot −

∑
i

ni(µi + ∆µi)

+q(EF + Evbm + ∆Vpot) + Eq
corr. (8)

EXq

tot is the total energy of the defective supercell in charge state q, and Ebulk
tot is the total

energy of the host supercell. ∆µi are chemical potentials of neutral atomic species i that are

added to (ni > 0) or removed from (ni < 0) the supercell when forming each defect, and µi

is the elemental reference energy, calculated for each element in its standard state. EF is the

Fermi energy (electron chemical potential) relative to the valence-band maximum (VBM),
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and accounts for electrons added to (q < 0) or removed from (q > 0) the supercell. Evbm

is the DFT-calculated energy of the valence-band maximum of the host system. ∆Vpot is

a potential alignment term to account for differences in background electrostatic potentials

between the host and defective supercells, which we calculate as a difference in spatially

averaged electrostatic potentials. Eq
corr is a correction term accounting for the finite size of

the supercell, arising from the electrostsatic interaction between defects and their periodic

images. For this study, we have used the correction scheme of Lany and Zunger,48 adapted

for anisotropic systems by Murphy and Hine.49

For our defect calculations, we have considered lithium vacancies and interstitials, VLi

and Lii; oxygen vacancies and interstitials, VO and Oi; lanthanum and zirconium vacancies,

VLa and VZr; zirconium interstitials. Zri; and a range of cation anti-sites: LaZr, ZroctLi , ZrtetLi ,

ZrLa, LiLa, Laoct
Li and LiZr. A superscript oct or tet denotes a defect located at an octahedral

or tetrahedral Li site, respectively. Preliminary calculations using the PBEsol functional50

gave a difference in formation energy for V oct
Li and V tet

Li of <0.05 eV, and we therefore consid-

ered these Li vacancies to be energetically equivalent for our subsequent HSE06 calculations.

Structural relaxations for all defects were calculated with cell parameters fixed to the opti-

mised values for stoichiometric LLZO.

Defect formation energies depend on the chemical potentials of the atomic species added

to or removed from the system when forming the defect (Eqn. 8). To restrict the available

chemical potential space to values that are, in principle, experimentally accessible, we con-

sider only chemical potentials for which LLZO is thermodynamically stable with respect to

competing phases. We have considered the set of competing phases identified by Canepa et

al.51 (see the SI, section S2), and have calculated the thermodynamic stability regime using

the code cplap.52

Density functional theory (DFT) calculations were performed using the plane-wave code

VASP,53–56 with valence electrons described by a plane-wave basis set with a cutoff of

520 eV. Interactions between core and valence electrons were described using the projector-
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augmented wave (PAW) method,57 with cores of [H] for Li, [Xe] for La, [Kr] for Zr and [He]

for O. Optimised lattice parameters for LLZO, competing phases, and elemental references

were obtained by performing a series of constant-volume geometry optimisation calculations,

and fitting the resulting energy–volume data to the Murnaghan equation of state.58

All calculations used the screened hybrid functional HSE06.59 HSE06 gives optimised

lattice parameters for tetragonal LLZO (a, b = 13.00 Å, c = 12.50 Å, α = 90◦) that are in

good agreement with experimental values (a, b = 13.13 Å, c = 12.66 Å, α = 90◦).60,61 The

HSE06 calculated band gap of 5.9 eV is also in good agreement with experimental values of

∼ 6.0 eV.11 HSE06 has also been shown to give accurate descriptions of defects in a range of

oxides,62–65 in contrast to standard GGA functionals, which often give qualitatively incorrect

descriptions of defect states in wide-gap oxides66–68 (the specific example of the V ×Li defect

in LLZO is discussed in more detail in section S1 of the SI).

All calculations of LLZO were performed on the 96 atom primitive cell of the low-

temperature tetragonal phase. Although donor-doped LLZO typically adopts a cubic lattice

geometry, the tetragonal→cubic transition is associated with onset of lithium disorder,28

making defect formation energies poorly defined within the formalism of Eqn. 8.69 k-point

sampling was selected to ensure energies converged to <1 meV/atom: all LLZO calculations

used a 2×2×2 Monkhorst-Pack k-point mesh. k-point sampling for competing phases and

elemental reference calculations is described in the supporting dataset.70

A dataset containing inputs and outputs for all DFT calculations supporting this study is

available under the CC-BY-4.0 licence from the University of Bath Research Data Archive.70

Python codes for calculating defect formation energies and defect concentrations as functions

of elemental chemical potentials, and Jupyter notebooks used to generate Figs. 1, 2, 4, 5,

and 6 are available under the MIT licence.71 Our analysis codes use the matplotlib,72

numpy,73 pandas,74 pymatgen,75 scipy,76 tqdm,77 and vasppy78 Python packages, and

SC-Fermi and Frozen SC-Fermi45,46 for calculating self-consistent defect concentrations.
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Results

Intrinsic Defect Chemistry

The predicted region of thermodynamic stability of LLZO spans a range of values that can

be broadly characterised along an oxygen-rich/metal-poor to oxygen-poor/metal-rich axis

(full details are given in section S2 of the SI). Fig. 1 shows calculated defect concentrations

at three illustrative sets of chemical potentials, spanning from oxygen-rich/metal-poor to

oxygen-poor/metal-rich conditions. In each case, we also show a defect transition-level dia-

gram (bottom panels), which shows defect formation energies as a function of Fermi energy,

and the self-consistent Fermi energy. Defect concentrations are calculated at a representa-

tive synthesis temperature of 1500 K.3 We assume that defect populations at synthesis are

“frozen in” when the system is cooled to operating temperatures. This is justified on the

grounds that, with the exception of the lithium interstitials and vacancies, kinetic barri-

ers for defect reorganisation are large, preventing the system from re-equilibrating at low

temperatures. Lithium ions are mobile at operating temperatures, and we can therefore ex-

pect some “recombination” of lithium interstitials and vacancies, reducing the populations

of these defects. Unless Li can exchange with an external source, however, the net lithium

stoichiometry, and the equilibrium Fermi energy, are both fixed at their high temperature

values.

At each set of chemical potential conditions we predict high concentrations of a broad

range of defects, including lithium vacancies and interstitials, oxygen vacancies and intersti-

tials, and a range of cation-antisites. Under O-rich conditions the defects with the highest

concentrations are VLi, LiLa, LaZr, LiZr, and ZrLi. Intermediate chemical potentials give

similar defect concentrations, with Li vacancies and metal anti-sites dominating. Under O-

poor/metal-rich conditions the concentration of VO increases, becoming the dominant defect

species. Li vacancy and metal anti-site concentrations, however, remain high.

The analysis above considers a two-dimensional projection of the four-dimensional {O,
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Figure 1: Equilibrium defect concentrations (middle panels) and defect formation-energies
as a function of Fermi energy (bottom panels) at three sets of elemental chemical potentials
within the LLZO thermodynamic stability region (top panel). Defect concentrations are
calculated at T = 1500 K. In each case, the bottom panel also shows the corresponding
self-consistent Fermi energy (vertical dotted line). [V ∗Li] denotes the net lithium vacancy
concentration, i.e. [V ∗Li] = [VLi] − [Lii]. Source: The data and code used to generate this
figure, and the figure file, are available under the MIT license as part of Ref. 71.
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Li, La, Zr} chemical potential space. At a fixed value of ∆µO, varying the metal chemi-

cal potentials can cause a change in the dominant cation defect. For example (SI section

3), moving from Li-rich/Zr-poor to La-poor/Zr-rich conditions at constant ∆µO causes the

dominant antisite defects to change from LiZr and LiLa to ZrLi and ZrLa.

Variation in Lithium Stoichiometry

Tuning the lithium stoichiometry in lithium-stuffed garnets is a popular synthesis strategy to

improve their ionic conductivities.10,18,32,79 A key question concerning the defect chemistry

of these materials, therefore, is to what extent might their lithium stoichiometries differ

from formal values as a function of synthesis conditions, due to native defect formation.18

As described above, the range of chemical potentials under which LLZO is predicted to

be thermodynamically stable can be characterised as lying between oxygen-rich/metal-poor

and oxygen-poor/metal-rich limits. Of the component elements, the chemical potential of

oxygen is perhaps most sensitive to synthesis conditions, and most easily controlled by

varying temperature or oxygen partial-pressure during synthesis. Because oxygen vacancies

act as donors, it has been suggested that increasing the concentration of O vacancies could

cause a corresponding increase in acceptor defects, e.g. VLi, potentially reducing lithium

stoichiometries below their nominal values18,36 (e.g. Eqn. 2).

Previous quantitative analyses of the relationship between oxygen vacancies and lithium

vacancies have used simple defect models that include only oxygen and lithium defect

species18,36,37 or only fully charged and neutral defects.39 In the previous section, however, we

have shown that considering a broad range of defects in LLZO, in all charge states, reveals

a more complex defect chemistry (Fig. 1). In particular, cation anti-sites—which include

both donor and acceptor species—are formed in high concentrations under all thermody-

namically accessible synthesis conditions. The presence of these additional defects means

the relationship between oxygen and lithium stoichiometries is likely to be more complex

than is predicted by simple charge-compensation schemes.
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To illustrate the effect of including a “full” set of defects and charge states in our ther-

modynamic model, we have calculated the lithium vacancy concentration as a function of

oxygen chemical potential using two models. The first is a “lithium–oxygen” model, where

we include only oxygen vacancies, lithium vacancies, and lithium interstitials. The second

is an “all-defects” model that includes all the defects discussed in the previous section. For

each model, we have performed a series of self-consistent defect calculations along a line in

chemical potential space from O-rich to O-poor conditions (full details are provided in the

SI, section S2). The predicted oxygen vacancy and lithium vacancy concentrations in each

case are shown in Fig. 2.

The simpler lithium–oxygen model predicts two regimes: at high ∆µO, the concentrations

of lithium vacancies and of oxygen vacancies are both approximately independent of ∆µO,

and the ratio of [VLi]:[VO] is ∼ 2 : 1, as expected from simple charge neutrality arguments

(Eqn. 2). The observation that the vacancy concentrations in this regime are independent

of ∆µO can be understood by considering the corresponding changes in the defect transition

level diagrams (e.g. Figs. 1a & 1b). Being constrained by the region of thermodynamic

stability for LLZO means a decrease in ∆µO is coupled to an increase in ∆µLi. As ∆µO

decreases, the Fermi energy increases (pinned by the VLi/Lii crossing point). The formation

energies of VLi, Lii, and VO (the latter in the +2 charge state) remain unchanged from their

values at high ∆µO, and these defect concentrations are therefore also unchanged. At even

lower values of ∆µO, a second regime is predicted, in which decreasing ∆µO causes both VLi

and VO concentrations to increase. This change in behaviour occurs when the Fermi energy

becomes sufficiently high that the lowest energy VO charge state changes from +2 to +1.

Further decreases in ∆µO are no longer fully compenstated by increases in the Fermi energy,

and the VO energy starts to decrease. Because the dominant VO charge state in this regime

is +1 the [VLi]:[VO] ratio decreases towards 1 : 1.

The “full” model has a similar overall shape, showing two general regimes of behaviour.

The ∆µO-independent regime is broader, however, than for the lithium–oxygen model, and
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lithium vacancy concentrations are higher, i.e. somewhat decoupled from the VO concen-

trations. This is because the model now includes additional donor defects, such as ZrLi

and ZrLa, with low formation energies. The transition to the ∆µO-dependent regime oc-

curs at a lower value of ∆µO than in the lithium–oxygen model, and oxygen and lithium

vacancy concentration are less tightly coupled. This, again, is due to the presence of other

defects, particularity cation antisite defects, which buffer the response of system to changing

∆µO. Strong coupling between VO and VLi concentrations now happens only when ∆µO is

sufficiently low that VO is the lowest-energy donor defect.

− 4 − 3 − 2 − 1
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VLi (lithium-oxygen)
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Figure 2: Predicted VLi and VO concentrations as a function of ∆µO, from two comparative
models: “lithium-oxygen” model, which only considers VO, VLi, and Lii (all charge states)
and “full” model including all defects considered in this paper. Source: The data and code
used to generate this figure, and the figure file, are available under the MIT license as part
of Ref. 71.

By performing this analysis across the full four-dimensional thermodynamic stability re-

gion of LLZO, we can calculate the full range of variation in lithium stoichiometry under

all thermodynamically accessible synthesis conditions.71 Although the concentrations of in-

dividual defects vary with changing thermodynamic conditions, the net variation in lithium

stoichiometry is small. We predict the minimum and maximum lithium stoichiometries of

“LLZO” under thermodynamic equilibrium to be xLi = 6.9975 and xLi = 7.00125.

Lithium stoichiometry is often assumed to directly describe the number of mobile charge-
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carrying Li+-ions. A simple sum over all lithium-defects does not, however, account for

possible differences in mobility for lithium present as different defect species. For example,

under Li-rich/Zr-poor conditions we predict high concentrations of LiZr antisites. The bind-

ing energy of lithium at a zirconium site can be estimated from the “Frenkel-pair” formation

energy for LiZr → Lii + VZr, which we calculate as ∆E = +3.42 eV. For comparison the

Frenkel-pair formation energy for LiLi → Lii + VLi is ∆E = +1.02 eV. The much larger

energy cost to remove Li from a Zr site, than from a Li site, suggests that lithium present

as LiZr (and analogously LiLa) is strongly bound to the lattice-cation site, and is therefore

not available as a mobile charge-carrier. This effect is not, however, expected to significantly

affect lithium-ion conductivities, as within the regime of thermodynamic stability the maxi-

mum number of Li ions trapped as LiZr antisites remains a small proportion of the total Li

(≤ 0.002%).

A second factor that might effect lithium-ion mobilities is possible clustering of V ′Li and

Lii to form associated defect pairs.38,39 Charged lithium vacancies and interstitials are ex-

pected to exhibit a mutual Coulombic attraction, giving a favourable negative defect associ-

ation energy. Formation of a defect complex, however, decreases the number of independent

defects in a system, and therefore decreases configurational entropy. Whether an equilibrium

population of defects consists predominantly of bound complexes or of independent defects

depends on the balance of these energetic and entropic contributions. These thermodynamic

considerations give the approximate condition that for defect pairs to be predominantly as-

sociated at equilibrium, the defect-pair binding energy, Eb, defined as the energy to separate

a “bound” defect pair, should be greater than the formation energy, EX
f of the individual

defect species.80 If the inverse is true, and EX
f > Eb, these defects will be predominantly

dissociated at equilibrium. To assess this behaviour in LLZO, we have calculated formation

energies for VLi–Lii defect pairs separated by 4.16 Å and by 6.13 Å. 4.16 Å corresponds to the

shortest VLi–Lii distance at which these defects do not simply recombine during geometry

15



optimisation, while 6.13 Å is the largest possible separation in the 96 atom primitive cell.1

These calculations give a defect-pair association energy of 0.09 eV. Comparing the energy of

the “associated” defect pair directly with the separate V ′Li and Lii formation energies gives

a defect-pair association energy of 0.19 eV. 2 Both calculated association energies are much

smaller than the V ′Li and Lii equilibrium formation energies of ∼ 0.51 eV, suggesting that

VLi and Lii defects adopt entropy-dominated disordered configurations.

VO Charge States and Oxygen Diffusion

Although the oxygen-vacancy concentration is not predicted to directly affect the lithium-

vacancy concentration, except under extreme O-poor conditions, we do predict a wide range

of equilibrium concentrations for oxygen vacancies, varying from a slightly oxygen-rich ma-

terial ([Oi] = 2.56× 1013 /cm3) to an oxygen-poor material ([VO] = 6.53× 1017 /cm3 across

the LLZO thermodynamic stability region. O vacancies have previously been suggested to

affect the electronic, optical, and ion-conduction properties of lithium-garnets.35,36 In this

section, we first examine the electronic properties of oxygen vacancies, and then consider

their capacity to diffuse through the garnet lattice, thereby potentially contributing to net

ionic conductivities.

The simple “Schottky-pair” charge-compenstation model of oxygen vacancy formation

(Eqn. 2) considers oxygen vacancies to have a formal charge of +2. Our calculations predict

that at low ∆µO the favoured oxygen-vacancy charge state is +1, or even 0; oxygen vacancy

formation leaves behind one, or two, electrons to be accommodated within the host lattice. In

oxides containing reducible cations, such as TiO2, excess electrons from donor defects, such

as VO, are typically accommodated by reducing these cations (e.g. for TiO2 this formally cor-

responds to reduction from Ti4+ to Ti3+ 66,81). LLZO does not contain any cations normally

considered to have alternate accessible oxidation states, which would normally be associted

1Calculations performed using PBEsol in a 192 atom conventional cell indicate that VLi–Lii pairs separated
by more than 4.2 Å give a converged “well-separated” energy.

2The calculated formation energy of a VLi–Lii pair at 4.16 Å is 0.83 eV, and at 6.13 Å is 0.92 eV.
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with undesirable electronic conduction. We find that excess electrons from VO formation

can be trapped at the vacant oxygen site (Fig. 3) to form occupied defect states lying deep

in the band gap (Fig. 4), i.e. oxygen vacancies act as F-centers under reducing, or n-type,

conditions. This behaviour is consistent with the experimental observations of Wolfenstein

et al. who observed colouration of LLZO samples heated in (highly reducing) molten Li,

associated with the appearance of a characteristic EPR signal proposed to correspond to

unpaired electrons trapped at color centres.35

Kubicek et al. have proposed that diffusion of oxygen vacancies in LLZO may contribute

to net ionic conductivities.36 To evaluate the capacity for diffusion by VO, we have performed

climbing-image nudged-elastic-band (cNEB) calculations82 on the six symmetry inequivalent

VO diffusion pathways between nearest-neighbour O-site pairs (full details are in the SI,

section S4). We find the lowest diffusion barrier is 0.73 eV, which is similar to the barriers

in high-temperature oxide-ion conductors.83,84 This suggests oxygen conduction does not

make a significant contribution to net ionic conductivities under typical battery operating

conditions, in agreement with the experimental analysis of Kubicek et al .36 Oxygen vacancies

may, however, diffuse through the host structure during high-temperature sintering.

c

b

a) VO 
• b) VO

× 

c

b

Figure 3: Partial charge density associated with the F-centre defect states for (a) V •O and
(b) V ×O (B). Oxygen ions are shown in orange, lithium ions in blue, zirconium in yellow,
and lanthanum in light blue. The partial charge density is shown in green. Source: The
geometry and charge density data used to generate this figure are available under the CC-
BY-4.0 licence as part of Ref. 70.
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Figure 4: Projected density of states for oxygen vacancies in 0, +1, and +2 charge states.
The valence-band maximum is aligned to 0 eV. The grey line indicates the position of the
Fermi level. Source: The data and code used to generate this figure, and the figure file, are
available under the MIT licence as part of Ref. 71.

Response to Supervalent Doping

Having evaluated the native defect chemistry of LLZO as a function of synthesis conditions,

we now consider the response to extrinsic doping by supervalent species. The doping-response

can be calculated within the self-consistent defect formalism by calculating the equilibrium

concentrations of all native defects, in the presence of a fixed concentration of the relevant

extrinsic dopant.46 The calculated response to supervalent doping is independent of the

choice of dopant species and insertion site, within a concentration scaling factor, as discussed

in the Methods section above. Here, we scale the predicted doping response using a generic

“2+” dopant, such as a trivalent cation at a lithium site, MLi. Within a simple charge

compensation model (Eqn. 1) each dopant is expected to produce two charge-compensating
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Figure 5: (a) Increase in lithium vacancy concentration as the amount of dopant M••
Li per

formula unit is increased for two different sets of chemical potentials. (b) and (c) Transition
level diagrams for the two cases in (a). In each diagram we show the Fermi level position
before, and after supervalent doping (0.15 M••

Li per formula unit). For clarity, here we only
show the VLi, Lii, and LiZr formation energies. Full transition level diagrams showing the
formation energies of all native defects are provided in the SI, Fig. S7. Source: The data
and code used to generate this figure, and the figure file, are available under the MIT licence
as part of Ref. 71.

lithium vacancies. Fig. 5(a) shows the calculated excess lithium vacancy concentration,

relative to the corresponding undoped system, under two sets of chemical potentials. In the

first example (∆µLi = −1.8 eV, ∆µZr = −6.2 eV, ∆µLa = −5.2 eV, ∆µO = −1.6 eV). the

doping response exactly follows the prediction of the simple charge-compensation model.

Additional lithium vacancies are introduced in a 2:1 ratio to the number of MLi dopants. In

the second example, however, (∆µLi = −2.1 eV, ∆µZr = −8.4 eV, ∆µLa = −6.5 eV, ∆µO =

−0.7 eV), the number of excess lithium-vacancies is significantly lower than expected, with a

negative deviation from the previous 2:1 ratio that becomes larger with dopant concentration.

These contrasting behaviours can be understood by examining the transition level dia-

grams in each case, and considering the effects of changing the Fermi level when introducing

dopants. Figs. 5b and 5c, respectively, show the two transition level diagrams for each set of

chemical potentials. For clarity we only show the relevant lowest formation-energy defects:

VLi, Lii, and LiZr. These two figures also show the self-consistent Fermi level calculated for

the undoped system ([MLi] = 0) and for [MLi] = 0.15 /formula unit. In both cases, when un-
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doped, the Fermi energy is pinned slightly below the VLi / Lii crossing point. Adding donor

dopants to the system increases the Fermi energy. In the absence of low-energy competing

defects (Fig. 5b) this decreases the VLi energy, and increases the Lii energy, resulting in an

increased concentration of lithium vacancies. In the second case, the ∆µLi chemical potential

is relatively high compared to ∆µZr, and increasing the Fermi level through doping causes

the Li ′′′Zr formation energy to fall below that of V ′Li. For sufficiently high dopant concentra-

tions, therefore, the Fermi energy is shifted high enough that LiZr becomes the dominant

acceptor defect. Further donor doping will now increase the amount of Li in the system,

as the concentration of LiZr increases more rapidly than that of VLi. The significance of the

relative values ∆µLi and ∆µZr can be seen in Fig. 6, which shows the deviation from simple

charge-compensating behaviour by VLi as a function of ∆µLi and ∆µZr, calculated for a grid

of points across the full region of thermodynamic stability for LLZO. The degree to which

lithium vacancy formation is suppressed is broadly described by ∆µZr − 4∆µLi, where the

factor of 4 accounts for the difference in charge states between the Li ′′′Zr and V ′Li defects (a

derivation of this approximate relation is given in the SI, section S6). The low formation

energy of the LiZr defect can be partly ascribed to the similar ionic radii of six-coordinate

Li+ (0.76 Å) and six-coordinate Zr4+ (0.72 Å).85

Summary and Discussion

One strategy for optimising the ionic conductivities of lithium-ion solid electrolytes is to tune

the concentration of mobile lithium ions through supervalent doping.10,86–89 For quantitative

control of lithium stoichiometry to be possible, it is necessary to understand the native defect

chemistry of the target material, and how this varies with synthesis conditions, as well as

the defect-response to extrinsic doping. In this study, we have considered these questions for

the prototypical lithium-stuffed garnet Li7La3Zr2O12 (LLZO), by performing hybrid density-

functional theory calculations on a broad range of defects, and calculating self-consistent
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defect concentrations as a function of synthesis conditions (component chemical potentials)

and dopant concentrations.

For the native defects, we find a rich family of defect species, including lithium and

oxygen vacancies and interstitials, which have been discussed previously,36–39 and cation

anti-sites; such as LiLa, LaZr, LiZr, and ZrLi; which are often neglected when considering the

defect chemistry of lithium-garnets. Under all conditions except extremely O-poor (reducing)

conditions, cation anti-site defects are the highest concentration defect species after VLi.

The existence of multiple native donor and acceptor defect species means the net lithium

stoichiometry is somewhat insensitive to synthesis conditions. We predict that in undoped

LLZO under equilibrium conditions the lithium stoichiometry deviates from its nominal value

of xLi = 7 by only +0.00125/−0.0025. Not all this lithium is expected to equally contribute

to lithium conduction, however. Under Li-rich conditions we predict high concentrations of

LiZr and LiLa antisites, which are expected to contain strongly bound, immobile, lithium.

Under strongly reducing conditions, O vacancies are stable in +1 or neutral (0) charge

states, and act as colour-centres by trapping electrons. We predict the lowest barrier for oxy-

gen vacancy diffusion is 0.73 eV, which suggests that vacancy-mediated oxygen conduction is

21



not significant at typical battery-operating temperatures, in agreement with previous exper-

imental analysis;36 although oxygen vacancies may readily diffuse during high-temperature

sintering of samples.

We also find that the response to supervalent (donor) doping depends on thermodynamic

conditions, and broadly depends on a balance between Li and Zr chemical potentials. Un-

der relatively low ∆µLi / high ∆µZr conditions, supervalent doping produces proportionate

numbers of charge-compensating Li vacancies, as is often commonly assumed (e.g. Eqn. 4).

Under relatively high ∆µLi / low ∆µZr conditions, however, donor doping is chiefly compen-

sated by LiZr anitsites, and Li stoichiometries strongly deviate from those predicted by simple

“vacancy compensation” models. This result means that synthetic recipes that use doping

to tune the Li stoichiometry in LLZO may not be able to assume direct compensation by Li

vacancies, as the dominant compensating acceptor defect can vary with synthesis conditions.

For this reason, we therefore recommend that experimental studies on the relationship be-

tween lithium stoichiometry and ionic conductivity directly measure lithium stoichiometries

of as-synthesised materials, to obtain reliable values.

More broadly, this study illustrates how combining first-principles defect calculations

with a grand-canonical thermodynamic model can provide a broad range of information on

the stoichiometry, defect chemistry, and doping response of solid electrolytes. Accurate and

quantitative calculations of defect chemistry have proven invaluable in understanding and

optimising materials for a range of other applications, such as microelectronics, optoelec-

tronics, and photovoltaics.84,90–93 We believe similarly detailed computational studies of the

defect chemistry of battery materials may prove equally valuable, for example, in helping to

develop rational synthetic schemes for optimising the properties of materials such as solid

electrolytes.

A key challenge in developing accurate computational models of defect chemistry in solid

lithium-ion electrolytes, however, is the question of how to treat the inherent Li-ion disorder

that characterises many highly conducting electrolyte families. The defect formalism used
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here is formally valid only in systems with an ordered ground state. Eqn. 3, which relates

defect concentrations to their formation energies, is derived by assuming the entropic con-

tribution to defect chemical potentials is that of an ideal lattice-gas; i.e. the zero entropy

reference state is a perfect ordered lattice. In an inherently disordered system, the entropy

change when adding or removing a lithium ion will deviate from this ideal value, changing

the relationship between defect concentration and formation energy. In addition, in a system

with inherent lithium disorder, the energy change (formally enthalpy change) upon adding

or removing a lithium ion is no longer given by the energy difference between single host and

defect configurations (as in Eqn. 8). Instead, the energies of the host and defective systems

should be computed as ensemble averages over all thermally accessible microstates.69,94,95

The development of quantitatively accurate models of defect equilibria in inherently dis-

ordered solid lithium-ion electrolytes is therefore expected to require advances in both the

thermodynamic formalism used in constructing models and in the computational approaches

used for calculating defect energies. Meeting these goals, however, brings the promise of a

more precise understanding of defect chemistry of a broad range of solid electrolytes, and the

potential for more accurate and practical tuning of their material properties through doping

and controlled synthetic conditions.

Supporting Information

The Supporting Information is available free of charge via the internet at http://pubs.acs.org.

This contains a justification for the use of the hybrid functional HSE06; a list of compet-

ing phases used to construct the phase diagram; variations in defect chemistry with lithium

chemical potential; details of oxygen vacancy nudged elastic band calculations; full transition

level diagrams for supervalent doping under varied chemical potential regimes, and a discus-

sion of the relationship between zirconium and lithium chemical potentials with regards to

LiZr antisite formation.
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