7 research outputs found

    Hiding in plain sight: discovery and phylogeography of a cryptic species of Trichinella (Nematoda: Trichinellidae) in wolverine (Gulo gulo)

    Get PDF
    Understanding parasite diversity and distribution is essential in managing the potential impact of para- sitic diseases in animals and people. Imperfect diagnostic methods, however, may conceal cryptic species. Here, we report the discovery and phylogeography of a previously unrecognized species of Trichinella in wolverine (Gulo gulo) from northwestern Canada that was indistinguishable from T. nativa using the stan- dard multiplex PCR assay based on the expansion segment 5 (ESV) of ribosomal DNA. The novel genotype, designated as T13, was discovered when sequencing the mitochondrial genome. Phylogenetic analyses of the mitochondrial genome and of 15 concatenated single-copy orthologs of nuclear DNA indicated a com- mon ancestor for the encapsulated clade is shared by a subclade containing Trichinella spiralis and Trichinella nelsoni, and a subclade containing T13 and remaining taxa: T12 + (T2 + T6) + [(T5 + T9) + (T 3 + T8)]. Of 95 individual hosts from 12 species of mammalian carnivores from northwestern Canada from which larvae were identified as T. nativa on multiplex PCR, only wolverines were infected with T13 (14 of 42 individuals). These infections were single or mixed with T. nativa and/or T6. Visual examination and motility testing confirmed that T13 is encapsulated and likely freeze-tolerant. We developed a new Polymerase Chain Reaction-Restriction Fragment Length Polymorphism which unequivocally distinguishes between T13 and T. nativa. We propose Trichinella chanchalensis n. sp. for T13, based on significant genetic divergence from other species of Trichinella and broad-based sampling of the Trichinella genome. Exploration of Alaskan and Siberian isolates may contribute to further resolution of a phylogeo- graphically complex history for species of Trichinella across Beringia, including Trichinella chanchalensis n. sp. (T13

    Identification of Trichinella taxa by ITS-1 amplicon next-generation sequencing with an improved resolution for detecting underrepresented genotypes in mixed natural infections

    No full text
    Abstract Background Amplicon-based next-generation sequencing (NGS) has rapidly gained popularity as a powerful method for delineating taxa in complex communities, including helminths. Here, we applied this approach to identify species and genotypes of zoonotic nematodes of the Trichinella genus. A known limitation of the current multiplex PCR (mPCR) assay recommended by the International Commission on Trichinellosis is that it does not differentiate Trichinella nativa from T. chanchalensis. Methods The new assay entails deep sequencing of an amplified variable fragment of the ribosomal cistron's (rDNA) internal transcribed spacer 1 using the Illumina platform. The assay was evaluated using first-stage larvae (L1) of select laboratory strains of various Trichinella taxa mixed in known proportions and then validated using archived L1 from 109 wildlife hosts. The species/genotypes of these L1 isolates from wildlife were previously determined using mPCR. Results NGS data analysis for Trichinella laboratory strains selected as representative of North American fauna revealed a sequence representation bias. Trichinella pseudospiralis, a non-encapsulated species, was the most underrepresented when mixed with T. spiralis, T. murrelli, T. nativa and Trichinella T6 in equal quantities. However, five L1 of T. pseudospiralis were readily revealed by NGS in a mix with 2000 L1 of T. nativa (1:400 ratio). From naturally infected wildlife, all Trichinella taxa revealed by mPCR were also identified by NGS in 103 of 107 (96.3%) samples amplified on both assays. NGS identified additional taxa in 11 (10.3%) samples, whereas additional taxa were revealed by mPCR in only four (3.7%) samples. Most isolates comprised single or mixed infections of T. nativa and Trichinella T6. On NGS, T. chanchalensis (T13) was detected in combination with Trichinella T6 in a wolverine (Gulo gulo) and in combination with T. nativa and Trichinella T6 in a marten (Martes americana) from the Northwest Territories, Canada. Conclusions This new NGS assay demonstrates strong potential as a single assay for identifying all recognised Trichinella taxa as well as improved sensitivity for detecting under-represented and novel genotypes in mixed infections. In addition, we report a new host record for T. chanchalensis in American marten. Graphical Abstrac

    Development and validation of a duplex real-time PCR assay for the diagnosis of equine piroplasmosis

    No full text
    Abstract Background Equine piroplasmosis (EP) is an economically significant infection of horses and other equine species caused by the tick-borne protozoa Theileria equi and Babesia caballi. The long-term carrier state in infected animals makes importation of such subclinical cases a major risk factor for the introduction of EP into non-enzootic areas. Regulatory testing for EP relies on screening of equines by serological methods. The definitive diagnosis of EP infection in individual animals will benefit from the availability of sensitive direct detection methods, for example, when used as confirmatory assays for non-negative serological test results. The objectives of this study were to develop a real-time quantitative polymerase chain reaction (qPCR) assay for simultaneous detection of both agents of EP, perform comprehensive evaluation of its performance and assess the assay’s utility for regulatory testing. Results We developed a duplex qPCR targeting the ema-1 gene of T. equi and the 18S rRNA gene of B. caballi and demonstrated that the assay has high analytical sensitivities for both piroplasm species. Validation of the duplex qPCR on samples from 362 competitive enzyme-linked immunosorbent assay (cELISA)-negative horses from Canada and the United States yielded no false-positive reactions. The assay’s performance was further evaluated using samples collected from 430 horses of unknown EP status from a highly endemic area in Brazil. This set of samples was also tested by a single-target 18S rRNA qPCR for T. equi developed at the OIE reference laboratory for EP in Japan, and a previously published single-target 18S rRNA qPCR for B. caballi whose oligonucleotides we adopted for use in the duplex qPCR. Matching serum samples were tested for antibodies to these parasites using cELISA. By the duplex qPCR, T. equi-specific 18S rRNA qPCR and cELISA, infections with T. equi were detected in 87.9% (95% confidence interval, CI: 84.5–90.7%), 90.5% (95% CI: 87.3–92.3%) and 87.4% (95% CI: 84.0–90.2%) of the horses, respectively. The B. caballi prevalence estimates were 9.3% (95% CI: 6.9–12.4%) by the duplex qPCR and 7.9% (95% CI: 5.7–10.9%) by the respective single-target qPCR assay. These values were markedly lower compared to the seroprevalence of 58.6% (95% CI: 53.9–63.2%) obtained by B. caballi-specific cELISA. The relative diagnostic sensitivity of the duplex qPCR for T. equi was 95.5%, as 359 of the 376 horses with exposure to T. equi confirmed by cELISA had parasitemia levels above the detection limit of the molecular assay. In contrast, only 39 (15.5%) of the 252 horses with detectable B. caballi-specific antibodies were positive for this piroplasm species by the duplex qPCR. Conclusions The duplex qPCR described here performed comparably to the existing single-target qPCR assays for T. equi and B. caballi and will be more cost-effective in terms of results turnaround time and reagent costs when both pathogens are being targeted for disease control and epidemiological investigations. These validation data also support the reliability of the ema-1 gene-specific oligonucleotides developed in this study for confirmatory testing of non-negative serological test results for T. equi by qPCR. However, the B. caballi-specific qPCR cannot be similarly recommended as a confirmatory assay for routine regulatory testing due to the low level of agreement with serological test results demonstrated in this study. Further studies are needed to determine the transmission risk posed by PCR-negative equines with detectable antibodies to B. caballi

    Hiding in plain sight: discovery and phylogeography of a cryptic species of Trichinella (Nematoda: Trichinellidae) in wolverine (Gulo gulo)

    Get PDF
    Understanding parasite diversity and distribution is essential in managing the potential impact of para- sitic diseases in animals and people. Imperfect diagnostic methods, however, may conceal cryptic species. Here, we report the discovery and phylogeography of a previously unrecognized species of Trichinella in wolverine (Gulo gulo) from northwestern Canada that was indistinguishable from T. nativa using the stan- dard multiplex PCR assay based on the expansion segment 5 (ESV) of ribosomal DNA. The novel genotype, designated as T13, was discovered when sequencing the mitochondrial genome. Phylogenetic analyses of the mitochondrial genome and of 15 concatenated single-copy orthologs of nuclear DNA indicated a com- mon ancestor for the encapsulated clade is shared by a subclade containing Trichinella spiralis and Trichinella nelsoni, and a subclade containing T13 and remaining taxa: T12 + (T2 + T6) + [(T5 + T9) + (T 3 + T8)]. Of 95 individual hosts from 12 species of mammalian carnivores from northwestern Canada from which larvae were identified as T. nativa on multiplex PCR, only wolverines were infected with T13 (14 of 42 individuals). These infections were single or mixed with T. nativa and/or T6. Visual examination and motility testing confirmed that T13 is encapsulated and likely freeze-tolerant. We developed a new Polymerase Chain Reaction-Restriction Fragment Length Polymorphism which unequivocally distinguishes between T13 and T. nativa. We propose Trichinella chanchalensis n. sp. for T13, based on significant genetic divergence from other species of Trichinella and broad-based sampling of the Trichinella genome. Exploration of Alaskan and Siberian isolates may contribute to further resolution of a phylogeo- graphically complex history for species of Trichinella across Beringia, including Trichinella chanchalensis n. sp. (T13
    corecore