16 research outputs found
Recommended from our members
Omnidirectional Current Enhancement From Laminated Moth-Eye Textured Polymer Packaging for Large-Area, Flexible III-V Solar Modules
Epitaxial lift-off (ELO) processes have allowed for
cheaper development of mechanically flexible, ultra-thin, and high-
efficiency III-V solar cells. ELO solar cells are natural candidates
for applications where solar cells must conform to curved surfaces
and provide high efficiency and high specific power generation
(W/kg). Such examples include power generation for unmanned
aerial vehicles, electric vehicles, and portable electrical power.
However, when considering these mobile solar applications, large
variations in angle of incidence (AOI) that inevitably occur can
greatly decrease overall system efficiency due to significant Fresnel
reflections. In this article, we demonstrate the integration of moth-
eye antireflection nanostructures on the polymer packaging layer
of ELO solar cell arrays using a low-cost, colloidal self-assembly
process. The moth-eye structures mitigate Fresnel reflections and
increase photocurrent generation over all measured angles of inci-
dence relative to ELO solar cell arrays with traditional untextured
polymer packaging. The nanostructures survive a commercial lam-
ination procedure, an important criterion that must be met to
ensure the feasibility of integration into commercial processing.
Outdoor solar characterization measurements are performed and,
under direct optical illumination, moth-eye textured solar cell ar-
rays show a maximum Isc enhancement of ∼58% at 79° AOI rela-
tive to traditional untextured polymer packaged solar cell arrays,
and when exposed to both direct and diffuse optical illumination a
maximum Isc enhancement of ∼23% at 79° AOI is observed.Center for Dynamics and Control of Material
Trichinella pseudospiralis in a wolverine (Gulo gulo) from the Canadian North
Species of Trichinella are a globally distributed assemblage of nematodes, often with distinct host ranges, which include people, domestic, and wild animals. Trichinella spp. are important in northern Canada, where dietary habits of people and methods of meat preparation (drying, smoking, fermenting as well as raw) increase the risk posed by these foodborne zoonotic parasites. Outbreaks in the arctic and subarctic regions of Canada and the United States are generally attributed to T. nativa (T2) or the T6 genotype, when genetic characterization is performed. We report the discovery of Trichinella pseudospiralis (T4), a non-encapsulated species, in a wolverine (Gulo gulo) from the Northwest Territories of Canada. This parasite has been previously reported elsewhere from both mammals and carnivorous birds, but our findings represent new host and geographic records for T. pseu- dospiralis. Multiplex PCR and sequencing of fragments of Cytochrome Oxidase Subunit I (COI) and D3 rDNA confirmed the identification. Phylogenetically, Canadian isolates linked with each other and others derived from Palearctic or Neotropical regions, but not elsewhere in the Nearctic (continental USA). We suggest that mi- gratory birds might have played a role in the dispersal of this pathogen 1000\u27s of km to northwestern Canada. Wolverines are not typically consumed by humans, and thus should not pose a direct food safety risk for tri- chinellosis. However, the current finding suggests that they may serve as an indicator of a broader distribution for T. pseudospiralis. Along with infection risk already recognized for T. nativa and Trichinella T6, our observa- tions emphasize the need for further studies using molecular diagnostics and alternative methods to clarify if this is a solitary case, or if T. pseudospiralis and other freeze susceptible species of Trichinella (such as T. spiralis) circulate more broadly in wildlife in Canada, and elsewhere
Hiding in plain sight: discovery and phylogeography of a cryptic species of Trichinella (Nematoda: Trichinellidae) in wolverine (Gulo gulo)
Understanding parasite diversity and distribution is essential in managing the potential impact of para- sitic diseases in animals and people. Imperfect diagnostic methods, however, may conceal cryptic species. Here, we report the discovery and phylogeography of a previously unrecognized species of Trichinella in wolverine (Gulo gulo) from northwestern Canada that was indistinguishable from T. nativa using the stan- dard multiplex PCR assay based on the expansion segment 5 (ESV) of ribosomal DNA. The novel genotype, designated as T13, was discovered when sequencing the mitochondrial genome. Phylogenetic analyses of the mitochondrial genome and of 15 concatenated single-copy orthologs of nuclear DNA indicated a com- mon ancestor for the encapsulated clade is shared by a subclade containing Trichinella spiralis and Trichinella nelsoni, and a subclade containing T13 and remaining taxa: T12 + (T2 + T6) + [(T5 + T9) + (T 3 + T8)]. Of 95 individual hosts from 12 species of mammalian carnivores from northwestern Canada from which larvae were identified as T. nativa on multiplex PCR, only wolverines were infected with T13 (14 of 42 individuals). These infections were single or mixed with T. nativa and/or T6. Visual examination and motility testing confirmed that T13 is encapsulated and likely freeze-tolerant. We developed a new Polymerase Chain Reaction-Restriction Fragment Length Polymorphism which unequivocally distinguishes between T13 and T. nativa. We propose Trichinella chanchalensis n. sp. for T13, based on significant genetic divergence from other species of Trichinella and broad-based sampling of the Trichinella genome. Exploration of Alaskan and Siberian isolates may contribute to further resolution of a phylogeo- graphically complex history for species of Trichinella across Beringia, including Trichinella chanchalensis n. sp. (T13
Trichinella pseudospiralis in a wolverine (Gulo gulo) from the Canadian North
Species of Trichinella are a globally distributed assemblage of nematodes, often with distinct host ranges, which include people, domestic, and wild animals. Trichinella spp. are important in northern Canada, where dietary habits of people and methods of meat preparation (drying, smoking, fermenting as well as raw) increase the risk posed by these foodborne zoonotic parasites. Outbreaks in the arctic and subarctic regions of Canada and the United States are generally attributed to T. nativa (T2) or the T6 genotype, when genetic characterization is performed. We report the discovery of Trichinella pseudospiralis (T4), a non-encapsulated species, in a wolverine (Gulo gulo) from the Northwest Territories of Canada. This parasite has been previously reported elsewhere from both mammals and carnivorous birds, but our findings represent new host and geographic records for T. pseu- dospiralis. Multiplex PCR and sequencing of fragments of Cytochrome Oxidase Subunit I (COI) and D3 rDNA confirmed the identification. Phylogenetically, Canadian isolates linked with each other and others derived from Palearctic or Neotropical regions, but not elsewhere in the Nearctic (continental USA). We suggest that mi- gratory birds might have played a role in the dispersal of this pathogen 1000\u27s of km to northwestern Canada. Wolverines are not typically consumed by humans, and thus should not pose a direct food safety risk for tri- chinellosis. However, the current finding suggests that they may serve as an indicator of a broader distribution for T. pseudospiralis. Along with infection risk already recognized for T. nativa and Trichinella T6, our observa- tions emphasize the need for further studies using molecular diagnostics and alternative methods to clarify if this is a solitary case, or if T. pseudospiralis and other freeze susceptible species of Trichinella (such as T. spiralis) circulate more broadly in wildlife in Canada, and elsewhere
Bovine cysticercosis: Preliminary observations on the immunohistochemical detection of Taenia saginata antigens in lymph nodes of an experimentally infected calf
A newly developed immunohistochemical test was used for the first time to demonstrate the presence of Taenia saginata (Cysticercus bovis) antigens in the lymph nodes of a heifer calf experimentally inoculated with Taenia saginata eggs. The new test should aid in the differential diagnosis of eosinophilic lymphadenitis in cattle
Identification of Trichinella taxa by ITS-1 amplicon next-generation sequencing with an improved resolution for detecting underrepresented genotypes in mixed natural infections
Abstract Background Amplicon-based next-generation sequencing (NGS) has rapidly gained popularity as a powerful method for delineating taxa in complex communities, including helminths. Here, we applied this approach to identify species and genotypes of zoonotic nematodes of the Trichinella genus. A known limitation of the current multiplex PCR (mPCR) assay recommended by the International Commission on Trichinellosis is that it does not differentiate Trichinella nativa from T. chanchalensis. Methods The new assay entails deep sequencing of an amplified variable fragment of the ribosomal cistron's (rDNA) internal transcribed spacer 1 using the Illumina platform. The assay was evaluated using first-stage larvae (L1) of select laboratory strains of various Trichinella taxa mixed in known proportions and then validated using archived L1 from 109 wildlife hosts. The species/genotypes of these L1 isolates from wildlife were previously determined using mPCR. Results NGS data analysis for Trichinella laboratory strains selected as representative of North American fauna revealed a sequence representation bias. Trichinella pseudospiralis, a non-encapsulated species, was the most underrepresented when mixed with T. spiralis, T. murrelli, T. nativa and Trichinella T6 in equal quantities. However, five L1 of T. pseudospiralis were readily revealed by NGS in a mix with 2000 L1 of T. nativa (1:400 ratio). From naturally infected wildlife, all Trichinella taxa revealed by mPCR were also identified by NGS in 103 of 107 (96.3%) samples amplified on both assays. NGS identified additional taxa in 11 (10.3%) samples, whereas additional taxa were revealed by mPCR in only four (3.7%) samples. Most isolates comprised single or mixed infections of T. nativa and Trichinella T6. On NGS, T. chanchalensis (T13) was detected in combination with Trichinella T6 in a wolverine (Gulo gulo) and in combination with T. nativa and Trichinella T6 in a marten (Martes americana) from the Northwest Territories, Canada. Conclusions This new NGS assay demonstrates strong potential as a single assay for identifying all recognised Trichinella taxa as well as improved sensitivity for detecting under-represented and novel genotypes in mixed infections. In addition, we report a new host record for T. chanchalensis in American marten. Graphical Abstrac
Use of proficiency samples to assess diagnostic laboratories in France performing a Trichinella digestion assay
International audienceRoutine diagnosis of animal trichinellosis for food safety and trade relies on a method of artificial digestion to free Trichinella muscle larvae from meat for subsequent identification by microscopy. As part of a quality control system, the French National Reference Laboratory (NRL) initiated ring trials to determine the sensitivity of the test performed in the 72 routine diagnostic laboratories in France. A method was devised to obtain calibrated meat samples containing known numbers of capsules with Trichinella spiralis muscle larvae. This method was based on an incomplete artificial digestion of Trichinella-infected mice carcasses to allow the collection of intact Trichinella capsules. Capsules were placed into a meatball of 100 +/- 2 g of pork and horsemeat to produce proficiency samples. Three categories of samples were prepared: small (3 to 5 capsules), medium (7 to 10), and large (12 to 15). The sensitivity was expressed as the percentage of muscle larvae recovered from each proficiency sample. Reproducibility was tested with ring trials organized between two NRLs (France and Canada), and a reference sensitivity of 84.9% was established. National ring trials were then organized in France, with the 72 routine diagnostic laboratories each receiving four proficiency samples per session. After five sessions, an improvement in the digest test sensitivity was observed. Results at the fifth session indicated sensitivities of 78.60% +/- 23.70%, 81.19% +/- 19.59%, and 80.52% +/- 14.71% muscle larvae for small, medium, and large samples, respectively. This study supports the use of proficiency samples to accurately evaluate the performance of routine diagnostic laboratories that conduct digestion tests for animal trichinellosis diagnosis