40 research outputs found

    Testing population synthesis models with globular cluster colors

    Get PDF
    We have measured an extensive set of UBVRIJHK colors for M31 globular clusters [Barmby et al. 2000]. We compare the predicted simple stellar population colors of three population synthesis models to the intrinsic colors of Galactic and M31 globular clusters. The best-fitting models fit the cluster colors very well -- the weighted mean color offsets are all < 0.05 mag. The most significant offsets between model and data are in the U and B passbands; these are not unexpected and are likely due to problems with the spectral libraries used by the models. The metal-rich clusters ([Fe/H] > -0.8) are best fit by young (8 Gyr) models, while the metal-poor clusters are best fit by older (12--16 Gyr) models. If this range of globular cluster ages is correct, it implies that conditions for cluster formation must have existed for a substantial fraction of the galaxies' lifetimes.Comment: To appear in ApJ Letters; 8 pages including 3 figures and 1 tabl

    Analysis of interstellar fragmentation structure based on IRAS images

    Get PDF
    The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct a densely sampled column density map of a cloud complex which is both self-gravitating and not (yet?) stirred up much by star formation, a column density image of the Taurus region has been constructed from IRAS data. The primary drawback to using the IRAS data for this purpose is that it contains no velocity information, and the possible importance of projection effects must be kept in mind

    Analysis of interstellar cloud structure based on IRAS images

    Get PDF
    The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct densely sampled column density maps of star-forming clouds, column density images of four nearby cloud complexes were constructed from IRAS data. The regions have various degrees of star formation activity, and most of them have probably not been affected much by the disruptive effects of young massive stars. The largest region, the Scorpius-Ophiuchus cloud complex, covers about 1000 square degrees (it was subdivided into a few smaller regions for analysis). Much of the work during the early part of the project focused on an 80 square degree region in the core of the Taurus complex, a well-studied region of low-mass star formation

    Cloud fluid models of gas dynamics and star formation in galaxies

    Get PDF
    The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density

    The Effect of Star Formation History on the Inferred Initial Stellar Mass Function

    Full text link
    Peaks and lulls in the star formation rate (SFR) over the history of the Galaxy produce plateaux and declines in the present day mass function (PDMF) where the main-sequence lifetime overlaps the age and duration of the SFR variation. These PDMF features can be misinterpreted as the form of the intrinsic stellar initial mass function (IMF) if the star formation rate is assumed to be constant or slowly varying with time. This effect applies to all regions that have formed stars for longer than the age of the most massive stars, including OB associations, star complexes, and especially galactic field stars. Related problems may apply to embedded clusters. Evidence is summarized for temporal SFR variations from parsec scales to entire galaxies, all of which should contribute to inferred IMF distortions. We give examples of various star formation histories to demonstrate the types of false IMF structures that might be seen. These include short-duration bursts, stochastic histories with log-normal amplitude distributions, and oscillating histories with various periods and phases. The inferred IMF should appear steeper than the intrinsic IMF over mass ranges where the stellar lifetimes correspond to times of decreasing SFRs; shallow portions of the inferred IMF correspond to times of increasing SFRs. If field regions are populated by dispersed clusters and defined by their low current SFRs, then they should have steeper inferred IMFs than the clusters. The SFRs required to give the steep field IMFs in the LMC and SMC are determined. Structure observed in several determinations of the Milky Way field star IMF can be accounted for by a stochastic and bursty star formation history.Comment: accepted by ApJ for 1 Jan 2006, Vol 636, 12 pages + 6 figure

    Pre-Existing Superbubbles as the Sites of Gamma-Ray Bursts

    Get PDF
    According to recent models, gamma-ray bursts apparently explode in a wide variety of ambient densities ranging from ~ 10^{-3} to 30 cm^{-3}. The lowest density environments seem, at first sight, to be incompatible with bursts in or near molecular clouds or with dense stellar winds and hence with the association of gamma-ray bursts with massive stars. We argue that low ambient density regions naturally exist in areas of active star formation as the interiors of superbubbles. The evolution of the interior bubble density as a function of time for different assumptions about the evaporative or hydrodynamical mass loading of the bubble interior is discussed. We present a number of reasons why there should exist a large range of inferred afterglow ambient densities whether gamma-ray bursts arise in massive stars or some version of compact star coalescence. We predict that many gamma-ray bursts will be identified with X-ray bright regions of galaxies, corresponding to superbubbles, rather than with blue localized regions of star formation. Massive star progenitors are expected to have their own circumstellar winds. The lack of evidence for individual stellar winds associated with the progenitor stars for the cases with afterglows in especially low density environments may imply low wind densities and hence low mass loss rates combined with high velocities. If gamma-ray bursts are associated with massive stars, this combination might be expected for compact progenitors with atmospheres dominated by carbon, oxygen or heavier elements, that is, progenitors resembling Type Ic supernovae.Comment: 14 pages, no figures, submitted to The Astrophysical Journa

    The M31 Globular Cluster Luminosity Function

    Full text link
    We combine our compilation of photometry of M31 globular cluster and probable cluster candidates with new near-infrared photometry for 30 objects. Using these data we determine the globular cluster luminosity function (GCLF) in multiple filters for the M31 halo clusters. We find a GCLF peak and dispersion of V_0^0=16.84 +/-0.11, sigma_t=0.93 +/- 0.13 (Gaussian sigma = 1.20 +/- 0.14), consistent with previous results. The halo GCLF peak colors (e.g., B^0_0 - V^0_0) are consistent with the average cluster colors. We also measure V-band GCLF parameters for several other subsamples of the M31 globular cluster population. The inner third of the clusters have a GCLF peak significantly brigher than that of the outer clusters (delta V =~ 0.5mag). Dividing the sample by both galacticentric distance and metallicity, we find that the GCLF also varies with metallicity, as the metal-poor clusters are on average 0.36 mag fainter than the metal-rich clusters. Our modeling of the catalog selection effects suggests that they are not the cause of the measured differences, but a more complete, less-contaminated M31 cluster catalog is required for confirmation. Our results imply that dynamical destruction is not the only factor causing variation in the M31 GCLF: metallicity, age, and cluster initial mass function may also be important.Comment: AJ, in press. 36 pages, including 7 figure

    The young stellar population of NGC 4214 as observed with HST. II. Results

    Full text link
    We present the results of a detailed UV-optical study of the nearby dwarf starburst galaxy NGC 4214 using multifilter HST/WFPC2+STIS photometry. The stellar extinction is found to be quite patchy, with some areas having values of E(4405-5495)< 0.1 mag and others, associated with star forming regions, much more heavily obscured, a result which is consistent with previous studies of the nebular extinction. We determined the ratio of blue-to-red supergiants and found it to be consistent with theoretical models for the metallicity of the SMC. The stellar IMF of the field in the range 20-100 solar masses is found to be steeper than Salpeter. A number of massive clusters and associations with ages between a few and 200 million years are detected and their properties are discussed.Comment: 49 pages, 12 figures, 6 table
    corecore