3,784 research outputs found

    Kahler manifolds and their relatives

    Get PDF
    Let M1 and M2 be two K¨ahler manifolds. We call M1 and M2 relatives if they share a non-trivial K¨ahler submanifold S, namely, if there exist two holomorphic and isometric immersions (K¨ahler immersions) h1 : S → M1 and h2 : S → M2. Moreover, two K¨ahler manifolds M1 and M2 are said to be weakly relatives if there exist two locally isometric (not necessarily holomorphic) K¨ahler manifolds S1 and S2 which admit two K¨ahler immersions into M1 and M2 respectively. The notions introduced are not equivalent (cf. Example 2.3). Our main results in this paper are Theorem 1.2 and Theorem 1.4. In the first theorem we show that a complex bounded domain D ⊂ Cn with its Bergman metric and a projective K¨ahler manifold (i.e. a projective manifold endowed with the restriction of the Fubini-Study metric) are not relatives. In the second theorem we prove that a Hermitian symmetric space of noncompact type and a projective K¨ahler manifold are not weakly relatives. Notice that the proof of the second result does not follows trivially from the first one. We also remark that the above results are of local nature, i.e. no assumptions are used about the compactness or completeness of the manifolds involve

    Geometric phase accumulation-based effects in the quantum dynamics of an anisotropically trapped ion

    Full text link
    New physical effects in the dynamics of an ion confined in an anisotropic two-dimensional Paul trap are reported. The link between the occurrence of such manifestations and the accumulation of geometric phase stemming from the intrinsic or controlled lack of symmetry in the trap is brought to light. The possibility of observing in laboratory these anisotropy-based phenomena is briefly discussed.Comment: 10 pages. Acta Physica Hungarica B 200

    Zeno Dynamics and High-Temperature Master Equations Beyond Secular Approximation

    Get PDF
    Complete positivity of a class of maps generated by master equations derived beyond the secular approximation is discussed. The connection between such class of evolutions and physical properties of the system is analyzed in depth. It is also shown that under suitable hypotheses a Zeno dynamics can be induced because of the high temperature of the bath.Comment: 9 pages, 2 figure

    GHZGHZ state generation of three Josephson qubits in presence of bosonic baths

    Full text link
    We analyze an entangling protocol to generate tripartite Greenberger-Horne-Zeilinger states in a system consisting of three superconducting qubits with pairwise coupling. The dynamics of the open quantum system is investigated by taking into account the interaction of each qubit with an independent bosonic bath with an ohmic spectral structure. To this end a microscopic master equation is constructed and exactly solved. We find that the protocol here discussed is stable against decoherence and dissipation due to the presence of the external baths.Comment: 16 pages and 4 figure

    Symplectic duality between complex domains

    Get PDF
    In this paper after extending the denition of symplectic duality (given in [3] for bounded symmetric domains ) to arbitrary complex domains of Cn centered at the origin we generalize some of the results proved in [3] and [4] to those domain

    Femtosecond β-cleavage dynamics: Observation of the diradical intermediate in the nonconcerted reactions of cyclic ethers

    Get PDF
    Femtosecond (fs) dynamics of reactions of cyclic ethers, symmetric and asymmetric structures, are reported. The diradical intermediates and their beta-cleavages, which involve simultaneous C-C, C-H sigma-bond breakage and C-O, C-C pi-bond formation, are observed and studied by fs-resolved mass spectrometry. To compare with experiments, we present density functional theory calculations of the potential energy surface and microcanonical rates and product distributions

    Dissipation and entanglement dynamics for two interacting qubits coupled to independent reservoirs

    Full text link
    We derive the master equation of a system of two coupled qubits by taking into account their interaction with two independent bosonic baths. Important features of the dynamics are brought to light, such as the structure of the stationary state at general temperatures and the behaviour of the entanglement at zero temperature, showing the phenomena of sudden death and sudden birth as well as the presence of stationary entanglement for long times. The model here presented is quite versatile and can be of interest in the study of both Josephson junction architectures and cavity-QED.Comment: 14 pages, 3 figures, submitted to Journal of Physics A: Mathematical and Theoretica

    The bisymplectomorphism group of a bounded symmetric domain

    Get PDF
    An Hermitian bounded symmetric domain in a complex vector space, given in its circled realization, is endowed with two natural symplectic forms: the flat form and the hyperbolic form. In a similar way, the ambient vector space is also endowed with two natural symplectic forms: the Fubini-Study form and the flat form. It has been shown in arXiv:math.DG/0603141 that there exists a diffeomorphism from the domain to the ambient vector space which puts in correspondence the above pair of forms. This phenomenon is called symplectic duality for Hermitian non compact symmetric spaces. In this article, we first give a different and simpler proof of this fact. Then, in order to measure the non uniqueness of this symplectic duality map, we determine the group of bisymplectomorphisms of a bounded symmetric domain, that is, the group of diffeomorphisms which preserve simultaneously the hyperbolic and the flat symplectic form. This group is the direct product of the compact Lie group of linear automorphisms with an infinite-dimensional Abelian group. This result appears as a kind of Schwarz lemma.Comment: 19 pages. Version 2: minor correction

    Microscopic description of dissipative dynamics of a level crossing transition

    Full text link
    We analyze the effect of a dissipative bosonic environment on the Landau-Zener-Stuckelberg-Majorana (LZSM) level crossing model by using a microscopic approach to derive the relevant master equation. For an environment at zero temperature and weak dissipation our microscopic approach confirms the independence of the survival probability on the decay rate that has been predicted earlier by the simple phenomenological LZSM model. For strong decay the microscopic approach predicts a notable increase of the survival probability, which signals dynamical decoupling of the initial state. Unlike the phenomenological model our approach makes it possible to study the dependence of the system dynamics on the temperature of the environment. In the limit of very high temperature we find that the dynamics is characterized by a very strong dynamical decoupling of the initial state - temperature-induced quantum Zeno effect.Comment: 6 pages, 4 figure
    • …
    corecore