23 research outputs found

    Novel in vivo mouse model of implant related spine infection.

    No full text
    Post-operative spine infections are a challenge, as hardware must often be retained to prevent destabilization of the spine, and bacteria form biofilm on implants, rendering them inaccessible to antibiotic therapy, and immune cells. A model of posterior-approach spinal surgery was created in which a stainless steel k-wire was transfixed into the L4 spinous process of 12-week-old C57BL/six mice. Mice were then randomized to receive either one of three concentrations (1 × 102 , 1 × 103 , and 1 × 104 colony forming units (CFU)) of a bioluminescent strain of Staphylococcus aureus or normal saline at surgery. The mice were then longitudinally imaged for bacterial bioluminescence to quantify infection. The 1 × 102 CFU group had a decrease in signal down to control levels by POD 25, while the 1 × 103 and 1 × 104 CFU groups maintained a 10-fold higher signal through POD 35. Bacteria were then harvested from the pin and surrounding tissue for confirmatory CFU counts. All mice in the 1 × 104 CFU group experienced wound breakdown, while no mice in the other groups had this complication. Once an optimal bacterial concentration was determined, mice expressing enhanced green fluorescent protein in their myeloid cells (Lys-EGFP) were utilized to contemporaneously quantify bacterial burden, and immune response. Neutrophil fluorescence peaked for both groups on POD 3, and then declined. The infected group continued to have a response above the control group through POD 35. This study, establishes a noninvasive in vivo mouse model of spine implant infection that can quantify bacterial burden and host inflammation longitudinally in real time without requiring animal sacrifice. Β© 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:193-199, 2017

    Combinatory antibiotic therapy increases rate of bacterial kill but not final outcome in a novel mouse model of Staphylococcus aureus spinal implant infection.

    Get PDF
    BACKGROUND:Management of spine implant infections (SII) are challenging. Explantation of infected spinal hardware can destabilize the spine, but retention can lead to cord compromise and biofilm formation, complicating management. While vancomycin monotherapy is commonly used, in vitro studies have shown reduced efficacy against biofilm compared to combination therapy with rifampin. Using an established in vivo mouse model of SII, we aim to evaluate whether combination therapy has increased efficacy compared to both vancomycin alone and infected controls. METHODS:An L-shaped, Kirschner-wire was transfixed into the L4 spinous process of 12-week-old C57BL/6 mice, and inoculated with bioluminescent Staphylococcus aureus. Mice were randomized into a vancomycin group, a combination group with vancomycin plus rifampin, or a control group receiving saline. Treatment began on post-operative day (POD) 7 and continued through POD 14. In vivo imaging was performed to monitor bioluminescence for 35 days. Colony-forming units (CFUs) were cultured on POD 35. RESULTS:Bioluminescence peaked around POD 7 for all groups. The combination group had a 10-fold decrease in signal by POD 10. The vancomycin and control groups reached similar levels on POD 17 and 21, respectively. On POD 25 the combination group dropped below baseline, but rebounded to the same level as the other groups, demonstrating a biofilm-associated infection by POD 35. Quantification of CFUs on POD 35 confirmed an ongoing infection in all three groups. CONCLUSIONS:Although both therapies were initially effective, they were not able to eliminate implant biofilm bacteria, resulting in a rebound infection after antibiotic cessation. This model shows, for the first time, why histologic-based, static assessments of antimicrobials can be misleading, and the importance of longitudinal tracking of infection. Future studies can use this model to test combinations of antibiotic therapies to see if they are more effective in eliminating biofilm prior to human trials

    In vivo Mouse Model of Spinal Implant Infection.

    No full text
    Spine implant infections portend poor outcomes as diagnosis is challenging and surgical eradication is at odds with mechanical spinal stability. The purpose of this method is to describe a novel mouse model of spinal implant infection (SII) that was created to provide an inexpensive, rapid, and accurate in vivo tool to test potential therapeutics and treatment strategies for spinal implant infections. In this method, we present a model of posterior-approach spinal surgery in which a stainless-steel k-wire is transfixed into the L4 spinous process of 12-week old C57BL/6J wild-type mice and inoculated with 1 x 103 CFU of a bioluminescent strain of Staphylococcus aureus Xen36 bacteria. Mice are then longitudinally imaged for bioluminescence in vivo on post-operative days 0, 1, 3, 5, 7, 10, 14, 18, 21, 25, 28, and 35. Bioluminescence imaging (BLI) signals from a standardized field of view are quantified to measure in vivo bacterial burden. To quantify bacteria adhering to implants and peri-implant tissue, mice are euthanized and the implant and surrounding soft tissue are harvested. Bacteria are detached from the implant by sonication, cultured overnight and then colony forming units (CFUs) are counted. The results acquired from this method include longitudinal bacterial counts as measured by in vivo S. aureus bioluminescence (mean maximum flux) and CFU counts following euthanasia. While prior animal models of instrumented spine infection have involved invasive, ex vivo tissue analysis, the mouse model of SII presented in this paper leverages noninvasive, real time in vivo optical imaging of bioluminescent bacteria to replace static tissue study. Applications of the model are broad and may include utilizing alternative bioluminescent bacterial strains, incorporating other types of genetically engineered mice to contemporaneously study host immune response, and evaluating current or investigating new diagnostic and therapeutic modalities such as antibiotics or implant coatings
    corecore