42 research outputs found

    Effects of n-Octyl-β-D-Glucopyranoside on Human and Rat Erythrocyte Membrane Stability against Hemolysis

    Get PDF
    The practical importance for the pharmaceutical and cosmetics industries of the interactions between biological membranes and surfactant molecules has led to intensive research within this area. The interactions of non-ionic surfactant n-octyl-β-D-glucopyranoside (OG) with the human and rat erythrocyte membranes were studied. The in vitro hemolytic and antihemolytic activities were determined by employing a method in which both erythrocytes were added to the hypotonic medium containing OG at different concentrations, and the amount of haemoglobin released was determined. n-octyl-β-D-glucopyranoside was found to have a biphasic effect on both types of erythrocyte membrane. We also investigated the interactions of OG with the erythrocyte membrane in isotonic medium; the dose-dependent curves show similar behaviour in both human and rat erythrocytes. Our results showed that OG has greater antihemolytic potency on rat than on human erythrocytes; furthermore, rat erythrocytes were more sensitive than human erythrocytes to hypotonic shock. How the different lipoprotein structure of these erythrocytes determines a difference in antihemolytic activity is discussed

    Anti-biofilm inhibitory synergistic effects of combinations of essential oils and antibiotics

    Get PDF
    In recent years, the increase of bacteria antibiotic-resistance has been a severe problem for public health. A useful solution could be to join some phytochemicals naturally present in essential oils (EOs) to the existing antibiotics, with the aim to increase their efficacy in therapies. According to in vitro studies, EOs and their components could show such effects. Among them, we studied the activity of Cinnammonum zeylanicum, Mentha piperita, Origanum vulgare, and Thymus vulgaris EOs on bacterial biofilm and their synergism when used in association with some common antibiotics such as norfloxacin, oxacillin, and gentamicin. The chemical composition of EOs was determined using gas chromatography (GC) coupled with mass spectrometry (MS) techniques. The EOs drug efficacy was evaluated on four different strains of Gram-positive bacteria forming biofilms. The synergistic effects were tested through the chequerboard microdilution method. The association EOs-antibiotics showed a strong destruction of the biofilm growth of the four bacterial species considered. The interaction of norfloxacin with EOs was the most effective in all the tested combinations against the strains object of this study. These preliminary results suggest the formulation of a new generation of antimicrobial agents based on a combination of antimicrobial compounds with different origin

    Synergistic activity of new diclofenac and essential oils combinations against different candida spp

    Get PDF
    According to recent studies, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) have shown a good antimicrobial and antifungal activity. Their association with essential oils (EOs) could be useful for the treatment of infections caused by Candida spp. The aim of this studyis to evaluate the synergistic antifungal activity of new combinations between Diclofenac Sodium Salt (DSS), a widely used NSAID, with EOs of Mentha × piperita, Pelargonium graveolens and Melaleuca alternifolia. The in-vitro antifungal activity was determined on different Candida strains. The determination of the chemical composition of EOs was carried out by gaschromatography-massspectrometry (GC-MS). Susceptibility testing of planktonic cells was performed by using the broth microdilution assay and checkerboard methods. Minimum Inhibitory Concentrations (MIC) of DSS was in a range from 1.02 to 2.05 µg/mL reaching a MIC value of 0.05 µg/mL when combined with Pelargonium graveolens (FICI = 0.23–0.35) or Menthapiperita (FICI = 0.22–0.30) EOs. These preliminary results show thatthe combination of the EOs with DSS improves the antifungal activity on all the tested Candida strains

    A case of suicide by ingestion of caffeine.

    Get PDF
    Intentional or unintentional caffeine abuse due to excessive intake of beverages or energy drinks containing caffeine is relatively frequent. However, death due to caffeine intoxication is rare and case reports of fatalities from caffeine toxicity are relatively infrequent. In this report, we describe an autopsy case involving a 31 year-old man who intentionally took a large amount of caffeine tablets in the form of a weight loss supplement as part of a suicide plan. Caffeine femoral blood concentration (170 mg/l) was within the toxic and potentially lethal ranges reported in the literature in similar cases. Postmortem biochemistry results suggested depressed glomerular filtration rate and pre-renal failure at the time of death but failed to reveal myoglobinuria, glycosuria, ketonuria or ketonemia. Based on the absence of pathological findings at autopsy and the high blood caffeine level, death was attributed to acute caffeine toxicity. The case emphasizes the usefulness of performing exhaustive toxicology and searching for all potentially relevant information in order to formulate appropriate hypotheses concerning the cause and manner of death
    corecore