34 research outputs found

    Multi-chaperone function modulation and association with cytoskeletal proteins are key features of the function of AIP in the pituitary gland

    Get PDF
    Despite the well-recognized role of loss-of-function mutations of the aryl hydrocarbon receptor interacting protein gene (AIP) predisposing to pituitary adenomas, the pituitary-speci c function of this tumor suppressor remains an enigma. To determine the repertoire of interacting partners for the AIP protein in somatotroph cells, wild-type and variant AIP proteins were used for pull-down/quantitative mass spectrometry experiments against lysates of rat somatotropinoma-derived cells; relevant ndings were validated by co-immunoprecipitation and co-localization. Global gene expression was studied in AIP mutation positive and negative pituitary adenomas via RNA microarrays. Direct interaction with AIP was con rmed for three known and six novel partner proteins. Novel interactions with HSPA5 and HSPA9, together with known interactions with HSP90AA1, HSP90AB1 and HSPA8, indicate that the function/ stability of multiple chaperone client proteins could be perturbed by a de cient AIP co-chaperone function. Interactions with TUBB, TUBB2A, NME1 and SOD1 were also identi ed. The AIP variants p.R304* and p.R304Q showed impaired interactions with HSPA8, HSP90AB1, NME1 and SOD1; p.R304* also displayed reduced binding to TUBB and TUBB2A, and AIP-mutated tumors showed reduced TUBB2A expression. Our ndings suggest that cytoskeletal organization, cell motility/adhesion, as well as oxidative stress responses, are functions that are likely to be involved in the tumor suppressor activity of AIP

    Pancreatic Expression database: a generic model for the organization, integration and mining of complex cancer datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is the 5th leading cause of cancer death in both males and females. In recent years, a wealth of gene and protein expression studies have been published broadening our understanding of pancreatic cancer biology. Due to the explosive growth in publicly available data from multiple different sources it is becoming increasingly difficult for individual researchers to integrate these into their current research programmes. The Pancreatic Expression database, a generic web-based system, is aiming to close this gap by providing the research community with an open access tool, not only to mine currently available pancreatic cancer data sets but also to include their own data in the database.</p> <p>Description</p> <p>Currently, the database holds 32 datasets comprising 7636 gene expression measurements extracted from 20 different published gene or protein expression studies from various pancreatic cancer types, pancreatic precursor lesions (PanINs) and chronic pancreatitis. The pancreatic data are stored in a data management system based on the BioMart technology alongside the human genome gene and protein annotations, sequence, homologue, SNP and antibody data. Interrogation of the database can be achieved through both a web-based query interface and through web services using combined criteria from pancreatic (disease stages, regulation, differential expression, expression, platform technology, publication) and/or public data (antibodies, genomic region, gene-related accessions, ontology, expression patterns, multi-species comparisons, protein data, SNPs). Thus, our database enables connections between otherwise disparate data sources and allows relatively simple navigation between all data types and annotations.</p> <p>Conclusion</p> <p>The database structure and content provides a powerful and high-speed data-mining tool for cancer research. It can be used for target discovery i.e. of biomarkers from body fluids, identification and analysis of genes associated with the progression of cancer, cross-platform meta-analysis, SNP selection for pancreatic cancer association studies, cancer gene promoter analysis as well as mining cancer ontology information. The data model is generic and can be easily extended and applied to other types of cancer. The database is available online with no restrictions for the scientific community at <url>http://www.pancreasexpression.org/</url>.</p

    Search for novel molecular targets in pancreatic cancer by comparative analysis of primary and metastic disease

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The role of S100P in the invasion of pancreatic cancer cells is mediated through cytoskeletal changes and regulation of cathepsin D.

    No full text
    Up-regulation of S100P, a member of the S100 calcium-binding protein family, is an early molecular event in the development of pancreatic cancer and it is expressed at high levels in both precursor lesions and invasive cancer. To gain more insight into the molecular mechanisms underlying the functional roles of this protein, we stably overexpressed S100P in the Panc1 pancreatic cancer cell line and identified the consequent changes in global protein expression by two-dimensional difference in-gel electrophoresis. The observed changes in target proteins were confirmed by Western blot analysis and immunofluorescence, whereas their functional effect was investigated using motility and invasion assays. In this study, we have shown that overexpression of S100P led to changes in the expression levels of several cytoskeletal proteins, including cytokeratins 8, 18, and 19. We have also shown disorganization of the actin cytoskeleton network and changes in the phosphorylation status of the actin regulatory protein cofilin. Additionally, we have shown that overexpression of S100P leads to increased expression of another early pancreatic cancer marker, S100A6, as well as the aspartic protease cathepsin D, both of which are involved in cellular invasion. Functional studies showed that the increased invasive potential of S100P-overexpressing cells was at least partially due to the increase in cathepsin D expression. In summary, our data suggest that these changes could contribute to the metastatic spread of pancreatic cancer and may explain the devastating prognosis of this disease
    corecore