5 research outputs found

    Transfer function analysis assesses resting cerebral perfusion metrics using hypoxia-induced deoxyhemoglobin as a contrast agent

    Get PDF
    Introduction: Use of contrast in determining hemodynamic measures requires the deconvolution of an arterial input function (AIF) selected over a voxel in the middle cerebral artery to calculate voxel wise perfusion metrics. Transfer function analysis (TFA) offers an alternative analytic approach that does not require identifying an AIF. We hypothesised that TFA metrics Gain, Lag, and their ratio, Gain/Lag, correspond to conventional AIF resting perfusion metrics relative cerebral blood volume (rCBV), mean transit time (MTT) and relative cerebral blood flow (rCBF), respectively.Methods: 24 healthy participants (17 M) and 1 patient with steno-occlusive disease were recruited. We used non-invasive transient hypoxia-induced deoxyhemoglobin as an MRI contrast. TFA and conventional AIF analyses were used to calculate averages of whole brain and smaller regions of interest.Results: Maps of these average metrics had colour scales adjusted to enhance contrast and identify areas of high congruence. Regional gray matter/white matter (GM/WM) ratios for MTT and Lag, rCBF and Gain/Lag, and rCBV and Gain were compared. The GM/WM ratios were greater for TFA metrics compared to those from AIF analysis indicating an improved regional discrimination.Discussion: Resting perfusion measures generated by The BOLD analysis resulting from a transient hypoxia induced variations in deoxyhemoglobin analyzed by TFA are congruent with those analyzed by conventional AIF analysis

    Assessing Perfusion in Steno-Occlusive Cerebrovascular Disease Using Transient Hypoxia-Induced Deoxyhemoglobin as a Dynamic Susceptibility Contrast Agent

    Get PDF
    BACKGROUND AND PURPOSE Resting brain tissue perfusion in cerebral steno-occlusive vascular disease can be assessed by MR imaging using gadolinium-based susceptibility contrast agents. Recently, transient hypoxia-induced deoxyhemoglobin has been investigated as a noninvasive MR imaging contrast agent. Here we present a comparison of resting perfusion metrics using transient hypoxia-induced deoxyhemoglobin and gadolinium-based contrast agents in patients with known cerebrovascular steno-occlusive disease. MATERIALS AND METHODS Twelve patients with steno-occlusive disease underwent DSC MR imaging using a standard bolus of gadolinium-based contrast agent compared with transient hypoxia-induced deoxyhemoglobin generated in the lungs using an automated gas blender. A conventional multi-slice 2D gradient echo sequence was used to acquire the perfusion data and analyzed using a standard tracer kinetic model. MTT, relative CBF, and relative CBV maps were generated and compared between contrast agents. RESULTS The spatial distributions of the perfusion metrics generated with both contrast agents were consistent. Perfusion metrics in GM and WM were not statistically different except for WM MTT. CONCLUSIONS Cerebral perfusion metrics generated with noninvasive transient hypoxia-induced changes in deoxyhemoglobin are very similar to those generated using a gadolinium-based contrast agent in patients with cerebrovascular steno-occlusive disease

    Transient deoxyhemoglobin formation as a contrast for perfusion MRI studies in patients with brain tumors: a feasibility study

    Get PDF
    Background: Transient hypoxia-induced deoxyhemoglobin (dOHb) has recently been shown to represent a comparable contrast to gadolinium-based contrast agents for generating resting perfusion measures in healthy subjects. Here, we investigate the feasibility of translating this non-invasive approach to patients with brain tumors. Methods: A computer-controlled gas blender was used to induce transient precise isocapnic lung hypoxia and thereby transient arterial dOHb during echo-planar-imaging acquisition in a cohort of patients with different types of brain tumors (n = 9). We calculated relative cerebral blood volume (rCBV), cerebral blood flow (rCBF), and mean transit time (MTT) using a standard model-based analysis. The transient hypoxia induced-dOHb MRI perfusion maps were compared to available clinical DSC-MRI. Results: Transient hypoxia induced-dOHb based maps of resting perfusion displayed perfusion patterns consistent with underlying tumor histology and showed high spatial coherence to gadolinium-based DSC MR perfusion maps. Conclusion: Non-invasive transient hypoxia induced-dOHb was well-tolerated in patients with different types of brain tumors, and the generated rCBV, rCBF and MTT maps appear in good agreement with perfusion maps generated with gadolinium-based DSC MR perfusion

    Investigations of hypoxia-induced deoxyhemoglobin as a contrast agent for cerebral perfusion imaging

    No full text
    The assessment of resting perfusion measures (mean transit time, cerebral blood flow, and cerebral blood volume) with magnetic resonance imaging currently requires the presence of a susceptibility contrast agent such as gadolinium. Here, we present an initial comparison between perfusion measures obtained using hypoxia-induced deoxyhemoglobin and gadolinium in healthy study participants. We hypothesize that resting cerebral perfusion measures obtained using precise changes of deoxyhemoglobin concentration will generate images comparable to those obtained using a clinical standard, gadolinium. Eight healthy study participants were recruited (6F; age 23-60). The study was performed using a 3-Tesla scanner with an eight-channel head coil. The experimental protocol consisted of a high-resolution T1-weighted scan followed by two BOLD sequence scans in which each participant underwent a controlled bolus of transient pulmonary hypoxia, and subsequently received an intravenous bolus of gadolinium. The resting perfusion measures calculated using hypoxia-induced deoxyhemoglobin and gadolinium yielded maps that looked spatially comparable. There was no statistical difference between methods in the average voxel-wise measures of mean transit time, relative cerebral blood flow and relative cerebral blood volume, in the gray matter or white matter within each participant. We conclude that perfusion measures generated with hypoxia-induced deoxyhemoglobin are spatially and quantitatively comparable to those generated from a gadolinium injection in the same healthy participant.11Nsciescopu

    Convolutional Neural Networks to Assess Steno-Occlusive Disease Using Cerebrovascular Reactivity

    No full text
    Cerebrovascular Reactivity (CVR) is a provocative test used with Blood oxygenation level-dependent (BOLD) Magnetic Resonance Imaging (MRI) studies, where a vasoactive stimulus is applied and the corresponding changes in the cerebral blood flow (CBF) are measured. The most common clinical application is the assessment of cerebral perfusion insufficiency in patients with steno-occlusive disease (SOD). Globally, millions of people suffer from cerebrovascular diseases, and SOD is the most common cause of ischemic stroke. Therefore, CVR analyses can play a vital role in early diagnosis and guiding clinical treatment. This study develops a convolutional neural network (CNN)-based clinical decision support system to facilitate the screening of SOD patients by discriminating between healthy and unhealthy CVR maps. The networks were trained on a confidential CVR dataset with two classes: 68 healthy control subjects, and 163 SOD patients. This original dataset was distributed in a ratio of 80%-10%-10% for training, validation, and testing, respectively, and image augmentations were applied to the training and validation sets. Additionally, some popular pre-trained networks were imported and customized for the objective classification task to conduct transfer learning experiments. Results indicate that a customized CNN with a double-stacked convolution layer architecture produces the best results, consistent with expert clinical readings
    corecore