236 research outputs found

    Unveiling the Dynamical State of Massive Clusters through the ICL Fraction

    Get PDF
    We have selected a sample of 11 massive clusters of galaxies observed by the Hubble Space Telescope in order to study the impact of the dynamical state on the intracluster light (ICL) fraction, the ratio of total integrated ICL to the total galaxy member light. With the exception of the Bullet cluster, the sample is drawn from the Cluster Lensing and Supernova Survey and the Frontier Fields program, containing five relaxed and six merging clusters. The ICL fraction is calculated in three optical filters using the CHEFs ICL estimator, a robust and accurate algorithm free of a priori assumptions. We find that the ICL fraction in the three bands is, on average, higher for the merging clusters, ranging between ~7% and 23%, compared with the ~2%–11% found for the relaxed systems. We observe a nearly constant value (within the error bars) in the ICL fraction of the regular clusters at the three wavelengths considered, which would indicate that the colors of the ICL and the cluster galaxies are, on average, coincident and, thus, so are their stellar populations. However, we find a higher ICL fraction in the F606W filter for the merging clusters, consistent with an excess of lower-metallicity/younger stars in the ICL, which could have migrated violently from the outskirts of the infalling galaxies during the merger event

    Sunyaev-Zeldovich Effect Studies of Galaxy Clusters with Bolocam (and Future Instrumentation)

    Get PDF
    Galaxy clusters are excellent laboratories for studying the astrophysics of gravitational collapse and the non-self-similar processes that can affect it. A number of different techniques allow us to study the distribution of the consituents of galaxy clusters. The thermal Sunyaev-Zeldovich effect measures the line-of-sight integral of the the pressure in the ICM plasma. Comparison to and combination with other probes enables a variety of studies of the ICM and of clusters: scaling relations, radial profiles, tests of hydrostatic equilibrium, etc. We report on the status of our program to image clusters in the thermal Sunyaev-Zeldovich effect at 150 GHz using Bolocam and perform such tests. We also describe the upcoming MKIDCam long-wavelength multi-color facility camera for the CSO, which will provide new capabilities in thermal Sunyaev-Zeldovich effect imaging. We comment on the role Tom Phillips and the CSO have played in facilitating the development of mm-wave SZ observations

    SZ contribution to characterize the shape of galaxy cluster haloes

    Get PDF
    We present the on-going activity to characterize the geometrical properties of the gas and dark matter haloes using multi-wavelength observations of galaxy clusters. The role of the SZ signal in describing the gas distribution is discussed for the pilot case of the CLASH object MACS J1206.2-0847

    A high signal to noise ratio map of the Sunyaev-Zel'dovich increment at 1.1 mm wavelength in Abell 1835

    Full text link
    We present an analysis of an 8 arcminute diameter map of the area around the galaxy cluster Abell 1835 from jiggle map observations at a wavelength of 1.1 mm using the Bolometric Camera (Bolocam) mounted on the Caltech Submillimeter Observatory (CSO). The data is well described by a model including an extended Sunyaev-Zel'dovich (SZ) signal from the cluster gas plus emission from two bright background submm galaxies magnified by the gravitational lensing of the cluster. The best-fit values for the central Compton value for the cluster and the fluxes of the two main point sources in the field: SMM J140104+0252, and SMM J14009+0252 are found to be y0=(4.34±0.52±0.69)×104y_{0}=(4.34\pm0.52\pm0.69)\times10^{-4}, 6.5±2.0±0.7\pm{2.0}\pm0.7 mJy and 11.3±1.9±1.1\pm{1.9}\pm1.1 mJy, where the first error represents the statistical measurement error and the second error represents the estimated systematic error in the result. This measurement assumes the presence of dust emission from the cluster's central cD galaxy of 1.8±0.51.8\pm0.5 mJy, based on higher frequency observations of Abell 1835. The cluster image represents one of the highest-significance SZ detections of a cluster in the positive region of the thermal SZ spectrum to date. The inferred central intensity is compared to other SZ measurements of Abell 1835 and this collection of results is used to obtain values for y0=(3.60±0.24)×104y_{0} = (3.60\pm0.24)\times10^{-4} and the cluster peculiar velocity vz=226±275v_{z} = -226\pm275 km/s.Comment: 9 pages, 5 figure

    CLUMP-3D. Testing Λ\LambdaCDM with galaxy cluster shapes

    Get PDF
    The Λ\LambdaCDM model of structure formation makes strong predictions on concentration and shape of DM (dark matter) halos, which are determined by mass accretion processes. Comparison between predicted shapes and observations provides a geometric test of the Λ\LambdaCDM model. Accurate and precise measurements needs a full three-dimensional analysis of the cluster mass distribution. We accomplish this with a multi-probe 3D analysis of the X-ray regular CLASH (Cluster Lensing And Supernova survey with Hubble) clusters combining strong and weak lensing, X-ray photometry and spectroscopy, and the Sunyaev-Zel'dovich effect. The cluster shapes and concentrations are consistent with Λ\LambdaCDM predictions. The CLASH clusters are randomly oriented, as expected given the sample selection criteria. Shapes agree with numerical results for DM-only halos, which hints at baryonic physics being not so effective in making halos rounder.Comment: v2: 8 pages, in press on ApJL. Extended discussion on regularity. One of three new companion papers of the CLUMP-3D project (Keiichi Umetsu et al., arxiv:1804.00664; I-Non Chiu et al., arXiv:1804.00676

    A Comparison and Joint Analysis of Sunyaev-Zel'dovich Effect Measurements from Planck and Bolocam for a set of 47 Massive Galaxy Clusters

    Get PDF
    We measure the SZ signal toward a set of 47 clusters with a median mass of 9.5×10149.5 \times 10^{14} M_{\odot} and a median redshift of 0.40 using data from Planck and the ground-based Bolocam receiver. When Planck XMM-like masses are used to set the scale radius θs\theta_{\textrm{s}}, we find consistency between the integrated SZ signal, Y5R500Y_{\textrm{5R500}}, derived from Bolocam and Planck based on gNFW model fits using A10 shape parameters, with an average ratio of 1.069±0.0301.069 \pm 0.030 (allowing for the 5\simeq 5% Bolocam flux calibration uncertainty). We also perform a joint fit to the Bolocam and Planck data using a modified A10 model with the outer logarithmic slope β\beta allowed to vary, finding β=6.13±0.16±0.76\beta = 6.13 \pm 0.16 \pm 0.76 (measurement error followed by intrinsic scatter). In addition, we find that the value of β\beta scales with mass and redshift according to βM0.077±0.026×(1+z)0.06±0.09\beta \propto M^{0.077 \pm 0.026} \times (1+z)^{-0.06 \pm 0.09}. This mass scaling is in good agreement with recent simulations. We do not observe the strong trend of β\beta with redshift seen in simulations, though we conclude that this is most likely due to our sample selection. Finally, we use Bolocam measurements of Y500Y_{500} to test the accuracy of the Planck completeness estimate. We find consistency, with the actual number of Planck detections falling approximately 1σ1 \sigma below the expectation from Bolocam. We translate this small difference into a constraint on the the effective mass bias for the Planck cluster cosmology results, with (1b)=0.93±0.06(1-b) = 0.93 \pm 0.06.Comment: Updated to include one additional co-author. Also some minor changes to the text based on initial feedbac
    corecore