14 research outputs found

    The role of epidermal growth factor-like module containing mucin-like hormone receptor 2 in human cancers.

    Get PDF
    G-protein coupled receptors (GPCRs) are among the most diverse and ubiquitous proteins in all of biology. The epidermal growth factor-seven span transmembrane (EGF-TM7) subfamily of adhesion GPCRs is a small subset whose members are mainly expressed on the surface of leukocytes. The EGF domains on the N-terminus add significant size to these receptors and they are considered to be among the largest members of the TM7 family. Although not all of their ligands or downstream targets have been identified, there is evidence implicating the EGF-TM7 family diverse processes such as cell adhesion, migration, inflammation, and autoimmune disease. Recent studies have identified expression of EGF-TM7 family members on human neoplasms including those of the thyroid, stomach, colon, and brain. Their presence on these tissues is not surprising given the ubiquity of GPCRs, but because their functional significance and pathways are not completely understood, they are of tremendous clinical and scientific interest. Current evidence suggests that expression of certain EGF-TM7 receptors is correlated with tumor grade, confers a more invasive phenotype, and increases the likelihood of metastatic disease. In this review, we will discuss the structure, function, and regulation of these receptors. We also describe the expression of these receptors in human cancers and explore their potential mechanistic significance

    Immunocompetent murine models for the study of glioblastoma immunotherapy.

    Get PDF
    Glioblastoma remains a lethal diagnosis with a 5-year survival rate of less than 10%. (NEJM 352:987-96, 2005) Although immunotherapy-based approaches are capable of inducing detectable immune responses against tumor-specific antigens, improvements in clinical outcomes are modest, in no small part due to tumor-induced immunosuppressive mechanisms that promote immune escape and immuno-resistance. Immunotherapeutic strategies aimed at bolstering the immune response while neutralizing immunosuppression will play a critical role in improving treatment outcomes for glioblastoma patients. In vivo murine models of glioma provide an invaluable resource to achieving that end, and their use is an essential part of the preclinical workup for novel therapeutics that need to be tested in animal models prior to testing experimental therapies in patients. In this article, we review five contemporary immunocompetent mouse models, GL261 (C57BL/6), GL26 (C57BL/6) CT-2A (C57BL/6), SMA-560 (VM/Dk), and 4C8 (B6D2F1), each of which offer a suitable platform for testing novel immunotherapeutic approaches

    Facial neuroma masquerading as acoustic neuroma

    No full text
    Facial nerve neuromas are rare benign tumors that may be initially misdiagnosed as acoustic neuromas when situated near the auditory apparatus. We describe a patient with a large cystic tumor with associated trigeminal, facial, audiovestibular, and brainstem dysfunction, which was suspicious for acoustic neuroma on preoperative neuroimaging. Intraoperative investigation revealed a facial nerve neuroma located in the cerebellopontine angle and internal acoustic canal. Gross total resection of the tumor via retrosigmoid craniotomy was curative. Transection of the facial nerve necessitated facial reanimation 4months later via hypoglossal-facial cross-anastomosis. Clinicians should recognize the natural history, diagnostic approach, and management of this unusual and mimetic lesion

    Vaccine therapies in malignant glioma.

    No full text
    Glioblastoma is a grade IV astrocytoma that is widely accepted in clinical neurosurgery as being an extremely lethal diagnosis. Long-term survival rates remain dismal, and even when tumors undergo gross resection with confirmation of total removal on neuroimaging, they invariably recur with even greater virulence. Standard therapeutic modalities as well as more contemporary treatments have largely resulted in disappointing improvements. However, the therapeutic potential of vaccine immunotherapy for malignant glioma should not be underestimated. In contrast to many of the available treatments, vaccine immunotherapy is unique because it offers the means of delivering treatment that is highly specific to both the patient and the tumor. Peptide, heat-shock proteins, and dendritic cell vaccines collectively encapsulate the majority of research efforts involving vaccine-based treatment modalities. In this review, important recent findings for these vaccine types are discussed in the context of ongoing clinical trials. Broad challenges to immunotherapy are also considered

    The role of epidermal growth factor-like module containing mucin-like hormone receptor 2 in human cancers

    Get PDF
    G-protein coupled receptors (GPCRs) are among the most diverse and ubiquitous proteins in all of biology. The epidermal growth factorseven span transmembrane (EGF-TM7) subfamily of adhesion GPCRs is a small subset whose members are mainly expressed on the surface of leukocytes. The EGF domains on the N-terminus add significant size to these receptors and they are considered to be among the largest members of the TM7 family. Although not all of their ligands or downstream targets have been identified, there is evidence implicating the EGF-TM7 family diverse processes such as cell adhesion, migration, inflammation, and autoimmune disease. Recent studies have identified expression of EGF-TM7 family members on human neoplasms including those of the thyroid, stomach, colon, and brain. Their presence on these tissues is not surprising given the ubiquity of GPCRs, but because their functional significance and pathways are not completely understood, they are of tremendous clinical and scientific interest. Current evidence suggests that expression of certain EGF-TM7 receptors is correlated with tumor grade, confers a more invasive phenotype, and increases the likelihood of metastatic disease. In this review, we will discuss the structure, function, and regulation of these receptors. We also describe the expression of these receptors in human cancers and explore their potential mechanistic significance

    PI3K pathway inhibitors: potential prospects as adjuncts to vaccine immunotherapy for glioblastoma

    No full text
    Constitutive activation of the PI3K pathway has been implicated in glioblastoma (GBM) pathogenesis. Pharmacologic inhibition can both inhibit tumor survival and downregulate expression of programmed death ligand-1, a protein highly expressed on glioma cells that strongly contributes to cancer immunosuppression. In that manner, PI3K pathway inhibitors can help optimize GBM vaccine immunotherapy. In this review, we describe and assess the potential integration of various classes of PI3K pathway inhibitors into GBM immunotherapy. While early-generation inhibitors have a wide range of immunosuppressive effects that could negate their antitumor potency, further work should better characterize how contemporary inhibitors affect the immune response. This will help determine if these inhibitors are truly a therapeutic avenue with a strong future in GBM immunotherapy

    Survival impact of time to initiation of chemoradiotherapy after resection of newly diagnosed glioblastoma

    No full text
    OBJECT There are few and conflicting reports on the effects of delayed initiation of chemoradiotherapy on the survival of patients with glioblastoma. The standard of care for newly diagnosed glioblastoma is concurrent radiotherapy and temozolomide chemotherapy after maximal safe resection; however, the optimal timing of such therapy is poorly defined. Given the lack of consensus in the literature, the authors performed a retrospective analysis of The Cancer Genome Atlas (TCGA) database to investigate the effect of time from surgery to initiation of therapy on survival in newly diagnosed glioblastoma. METHODS Patients with primary glioblastoma diagnosed since 2005 and treated according to the standard of care were identified from TCGA database. Kaplan-Meier and multivariate Cox regression analyses were used to compare overall survival (OS) and progression-free survival (PFS) between groups stratified by postoperative delay to initiation of radiation treatment. RESULTS There were 218 patients with newly diagnosed glioblastoma with known time to initiation of radiotherapy identified in the database. The median duration until therapy was 27 days. Delay to radiotherapy longer than the median was not associated with worse PFS (HR = 0.918, p = 0.680) or OS (HR = 1.135, p = 0.595) in multivariate analysis when controlling for age, sex, KPS score, and adjuvant chemotherapy. Patients in the highest and lowest quartiles for delay to therapy (≤ 20 days vs ≥ 36 days) did not statistically differ in PFS (p = 0.667) or OS (p = 0.124). The small subset of patients with particularly long delays (> 42 days) demonstrated worse OS (HR = 1.835, p = 0.019), but not PFS (p = 0.74). CONCLUSIONS Modest delay in initiation of postoperative chemotherapy and radiation does not appear to be associated with worse PFS or OS in patients with newly diagnosed glioblastoma, while significant delay longer than 6 weeks may be associated with worse OS

    Prognosis by tumor location for pediatric spinal cord ependymomas.

    No full text
    ObjectEpendymoma is a common CNS tumor in children, with spinal cord ependymomas making up 13.1% of all ependymomas in this age group. The clinical features that affect prognosis in pediatric spinal cord ependymomas are not well understood. A comprehensive literature review was performed to determine whether a tumor location along the spinal cord is prognostically significant in children undergoing surgery for spinal cord ependymomas.MethodsA PubMed search was performed to identify all papers that contained data on patients with spinal cord ependymomas. Only pediatric patients (age < 18 years) who underwent resection with a clearly reported tumor location were included in the analysis. Myxopapillary tumors were excluded from study. Tumor location was subdivided into 6 regions: cervicomedullary, cervical, cervicothoracic, thoracic, thoracolumbar, and conus medullaris. Kaplan-Meier survival and Cox regression analyses were performed to determine the effects of tumor location on progression-free survival (PFS) and overall survival (OS).ResultsFifty-eight patients who underwent resection of spinal cord ependymomas were identified. Ependymomas were located all along the spinal cord but occurred with the highest frequency in the cervical region (29.3%). Progression-free survival was significantly better in patients with tumors arising in the upper portion of the spinal cord (p = 0.031), which remained significant in the multivariate Cox regression analysis (p < 0.05). Moreover, OS was significantly better in patients with upper spinal cord ependymomas than in those harboring ependymomas in the lower spinal cord (p = 0.048).ConclusionsAlthough more common in adults, spinal ependymomas can occur anywhere along the spinal cord in the pediatric population; however, tumors occurring in the lower half of the spinal cord carry a worse prognosis with shorter PFS and OS. By comparison, ependymomas in the upper spinal cord recur later and less frequently, with little or no mortality in this patient group
    corecore