172 research outputs found

    Why Does a Kronecker Model Result in Misleading Capacity Estimates?

    Full text link
    Many recent works that study the performance of multi-input multi-output (MIMO) systems in practice assume a Kronecker model where the variances of the channel entries, upon decomposition on to the transmit and the receive eigen-bases, admit a separable form. Measurement campaigns, however, show that the Kronecker model results in poor estimates for capacity. Motivated by these observations, a channel model that does not impose a separable structure has been recently proposed and shown to fit the capacity of measured channels better. In this work, we show that this recently proposed modeling framework can be viewed as a natural consequence of channel decomposition on to its canonical coordinates, the transmit and/or the receive eigen-bases. Using tools from random matrix theory, we then establish the theoretical basis behind the Kronecker mismatch at the low- and the high-SNR extremes: 1) Sparsity of the dominant statistical degrees of freedom (DoF) in the true channel at the low-SNR extreme, and 2) Non-regularity of the sparsity structure (disparities in the distribution of the DoF across the rows and the columns) at the high-SNR extreme.Comment: 39 pages, 5 figures, under review with IEEE Trans. Inform. Theor

    Improving Bandwidth Efficiency in E-band Communication Systems

    Get PDF
    The allocation of a large amount of bandwidth by regulating bodies in the 70/80 GHz band, i.e., the E-band, has opened up new potentials and challenges for providing affordable and reliable Gigabit per second wireless point-to-point links. This article first reviews the available bandwidth and licensing regulations in the E-band. Subsequently, different propagation models, e.g., the ITU-R and Cane models, are compared against measurement results and it is concluded that to meet specific availability requirements, E-band wireless systems may need to be designed with larger fade margins compared to microwave systems. A similar comparison is carried out between measurements and models for oscillator phase noise. It is confirmed that phase noise characteristics, that are neglected by the models used for narrowband systems, need to be taken into account for the wideband systems deployed in the E-band. Next, a new multi-input multi-output (MIMO) transceiver design, termed continuous aperture phased (CAP)-MIMO, is presented. Simulations show that CAP-MIMO enables E-band systems to achieve fiber-optic like throughputs. Finally, it is argued that full-duplex relaying can be used to greatly enhance the coverage of E-band systems without sacrificing throughput, thus, facilitating their application in establishing the backhaul of heterogeneous networks.Comment: 16 pages, 6 Figures, Journal paper. IEEE Communication Magazine 201

    Exploiting Channel Diversity in Secret Key Generation from Multipath Fading Randomness

    Full text link
    We design and analyze a method to extract secret keys from the randomness inherent to wireless channels. We study a channel model for multipath wireless channel and exploit the channel diversity in generating secret key bits. We compare the key extraction methods based both on entire channel state information (CSI) and on single channel parameter such as the received signal strength indicators (RSSI). Due to the reduction in the degree-of-freedom when going from CSI to RSSI, the rate of key extraction based on CSI is far higher than that based on RSSI. This suggests that exploiting channel diversity and making CSI information available to higher layers would greatly benefit the secret key generation. We propose a key generation system based on low-density parity-check (LDPC) codes and describe the design and performance of two systems: one based on binary LDPC codes and the other (useful at higher signal-to-noise ratios) based on four-ary LDPC codes

    Key Generation Using External Source Excitation: Capacity, Reliability, and Secrecy Exponent

    Full text link
    We study the fundamental limits to secret key generation from an excited distributed source (EDS). In an EDS a pair of terminals observe dependent sources of randomness excited by a pre-arranged signal. We first determine the secret key capacity for such systems with one-way public messaging. We then characterize a tradeoff between the secret key rate and exponential bounds on the probability of key agreement failure and on the secrecy of the key generated. We find that there is a fundamental tradeoff between reliability and secrecy. We then explore this framework within the context of reciprocal wireless channels. In this setting, the users transmit pre-arranged excitation signals to each other. When the fading is Rayleigh, the observations of the users are jointly Gaussian sources. We show that an on-off excitation signal with an SNR-dependent duty cycle achieves the secret key capacity of this system. Furthermore, we characterize a fundamental metric -- minimum energy per key bit for reliable key generation -- and show that in contrast to conventional AWGN channels, there is a non-zero threshold SNR that achieves the minimum energy per key bit. The capacity achieving on-off excitation signal achieves the minimum energy per key bit at any SNR below the threshold. Finally, we build off our error exponent results to investigate the energy required to generate a key using a finite block length. Again we find that on-off excitation signals yield an improvement when compared to constant excitation signals. In addition to Rayleigh fading, we analyze the performance of a system based on binary channel phase quantization.Comment: accepted for publication, IEEE Transactions on Information Theor
    • …
    corecore