4 research outputs found

    Suitability of testers to characterize provitamin a content and agronomic performance of tropical maize inbred lines

    Get PDF
    Open Access Journal; Published online: 08 Aug 2022Vitamin A deficiency poses health risks for children, pregnant women, and nursing mothers in sub-Saharan Africa (SSA) and Southeast Asia. Provitamin A–biofortified maize varieties can contribute to minimizing the adverse effects of vitamin A deficiency in areas where maize is a staple food crop. Identifying suitable testers is important to breed provitamin A–biofortified hybrid maize. This study was therefore conducted to 1) assess the suitability of maize inbred lines with contrasting levels of provitamin A (one with high and one with low provitamin A concentration) to assess the combining ability of maize inbred lines in accumulating provitamin A and other carotenoids, and grain yield, 2) confirm the mode of inheritance of provitamin A and grain yield, and 3) identify promising inbred lines with desirable combining ability effects for use to develop high-yielding provitamin A–biofortified hybrids. The inbreds crossed to the two inbred testers were evaluated in four environments for the carotenoid content and eight environments for the agronomic performance. The combined analysis of variance revealed a significant genetic variation among the testcrosses for all carotenoids, grain yield, and other agronomic traits. The mode of inheritance for grain yield, other agronomic traits, provitamin A, and other carotenoids was regulated by both additive and non-additive gene effects with a prominence of additive gene effects. The high provitamin A tester that displayed positive GCA effects for β-carotene and provitamin A content, broader agronomic performance of testcrosses, and higher levels of provitamin A in testcrosses can be considered suitable for breeding programs developing provitamin A–biofortified hybrids. The inbred lines TZI2012, TZI2142, TZI2130, TZI2065-2, TZI2161, TZI2025, TZI1278, TZI1314, TZI1304, and TZI2032 with positive GCA effects for grain yield and provitamin A content could be used as parental lines to develop source population of new inbred lines and high-yielding hybrids with elevated levels of provitamin A. The best performing hybrids are promising for release as highyielding provitamin A maize hybrids after further evaluations

    Comparative assessment of effectiveness of alternative genotyping assays for characterizing carotenoids accumulation in tropical maize inbred lines

    Get PDF
    Open Access Journal; Published online: 09 Oct 2021The development of maize varieties with increased concentration of Provitamin A (PVA) is an effective and affordable strategy to combat vitamin A deficiency in developing nations. However, the considerably high cost of carotene analysis poses a major challenge for maize PVA biofortification, prompting the use of marker-assisted selection. Presently, two types of genotyping with PVA trait-linked functional markers have been developed and extensively used in breeding programs. The two systems are low throughput gel-based genotyping and genotyping with Kompetitive Allele-Specific PCR (KASP) single nucleotide polymorphism (SNPs) markers. Although the KASP SNPs genotyping was developed to replace the gel-based genotyping, studies have not been conducted to compare the effectiveness of the KASP SNPs markers with the gel-based markers. This study was conducted to assess the carotenoid content of 64 tropical PVA biofortified maize inbred lines containing temperate germplasm in their genetic backgrounds and screen them with both gel-based and KASP markers of PSY1, LCYE and crtRB1 genes. Many of the 64 inbred lines had PVA concentrations surpassing the 15 µg/g provitamin A breeding target set by the HarvestPlus Challenge Program. Favorable alleles of crtRB1, crtRB1 and the KASP SNPs markers were detected in 25 inbred lines with high PVA concentrations. Inbred lines with the favorable alleles of LCYE had the highest concentrations of non-PVA carotenoids, whereas those with the favorable alleles of crtRB1 had high levels of PVA carotenoids. Data from the sequenced region of LCYE revealed one SNP in the first intron that clearly differentiated the high and low β-carotene maize inbred lines. The results of our study demonstrate that the automated KASP SNPs markers can replace the gel-based genotyping for screening a large number of early generation maize inbred lines for PVA content

    Performance of testers with contrasting provitamin A content to evaluate provitamin A maize for resistance to Aspergillus flavus infection and aflatoxin production

    Get PDF
    Open Access JournalIn sub-Saharan Africa (SSA), millions of people depend on maize as a primary staple. However, maize consumers in SSA may be exposed to malnutrition due to vitamin A deficiency (VAD) and unsafe aflatoxin levels, which can lead to serious economic and public health problems. Provitamin A (PVA) biofortified maize has been developed to alleviate VAD and may have additional benefits such as reduced aflatoxin contamination. In this study, maize inbred testers with contrasting PVA content in grain were used to identify inbred lines with desirable combining ability for breeding to enhance their level of resistance to aflatoxin. Kernels of 120 PVA hybrids generated by crossing 60 PVA inbreds with varying levels of PVA (5.4 to 51.7 µg/g) and two testers (low and high PVA, 14.4 and 25.0 µg/g, respectively) were inoculated with a highly toxigenic strain of Aspergillus flavus. Aflatoxin had a negative genetic correlation with β-carotene (r = −0.29, p 0.5). Eight inbreds had combined significant negative GCA effects for aflatoxin accumulation and spore count with significant positive GCA effects for PVA. Five testcrosses had combined significant negative SCA effects for aflatoxin with significant positive SCA effects for PVA. The high PVA tester had significant negative GCA effects for aflatoxin, lutein, β-carotene, and PVA. The study identified lines that can be used as parents to develop superior hybrids with high PVA and reduced aflatoxin accumulation. Overall, the results point out the importance of testers in maize breeding programs to develop materials that can contribute to controlling aflatoxin contamination and reducing VAD

    Optimizing use of U.S. Ex-PVP inbred lines for enhancing agronomic performance of tropical Striga resistant maize inbred lines

    Get PDF
    Open Access JournalBackground Temperate maize inbred lines with expired Plant Variety Protection Act certificates (Ex-PVP) are potential sources of desirable alleles for tropical germplasm improvement. Up to now, the usefulness of the Ex-PVP inbred lines as a potential source of novel beneficial alleles for Striga hermonthica resistance breeding to enhance genetic gain in tropical maize has not been reported. Results This study was thus conducted to characterize the combining ability of 24 Ex-PVP inbred lines in crosses with two tropical Striga resistant inbred testers under Striga-infested and non-infested conditions and across three locations for 2 years. Many testcrosses between Ex-PVP inbred lines and the first tester (T1) produced competitive or significantly higher grain yields compared to the hybrid between the two resistant testers under Striga infested and non-infested conditions and across multiple test locations. Also, most of the testcrosses with positive heterosis for grain yield and negative heterosis for Striga damage and emerged Striga count involved T1 as a tester. Our study identified six Ex-PVP inbred lines with positive GCA effects for grain yield under Striga infested and non-infested conditions and across multiple test locations. Amongst these, inbred lines HB8229-1 and WIL900-1 also displayed negative GCA effects for emerged Striga count and Striga damage rating. The inbred line HB8229-1 showed positive SCA effects for grain yield with T2, whereas WIL900-1 had positive SCA effects for grain yield with T1. Over 70% of the Ex-PVP inbred lines were consistently assigned to specific heterotic groups using yield-based classifying methods (mean grain yield and SCA effects). Conclusions These results could facilitate systematic introgression of the Ex-PVP inbred lines into the existing Striga resistant heterotic groups in IITA. The Ex-PVP inbred lines with positive GCA effects and producing high grain yields in hybrid combinations could be useful parents for enhancing Striga resistance and agronomic performance of tropical maize hybrids
    corecore