69 research outputs found
Dark matter concentrations in galactic nuclei according to polytropic models
We calculate the radial profiles of galaxies where the nuclear region is
self-gravitating, consisting of self-interacting dark matter (SIDM) with
degrees of freedom. For sufficiently high density this dark matter becomes
collisional, regardless of its behaviour on galaxy scales. Our calculations
show a spike in the central density profile, with properties determined by the
dark matter microphysics, and the densities can reach the `mean density' of a
black hole (from dividing the black-hole mass by the volume enclosed by the
Schwarzschild radius). For a galaxy halo of given compactness
(), certain values for the dark matter entropy yield a dense
central object lacking an event horizon. For some soft equations of state of
the SIDM (e.g. ), there are multiple horizonless solutions at given
compactness. Although light propagates around and through a sphere composed of
dark matter, it is gravitationally lensed and redshifted. While some
calculations give non-singular solutions, others yield solutions with a central
singularity. In all cases the density transitions smoothly from the central
body to the dark-matter envelope around it, and to the galaxy's dark matter
halo. We propose that pulsar timing observations will be able to distinguish
between systems with a centrally dense dark matter sphere (for different
equations of state) and conventional galactic nuclei that harbour a
supermassive black hole.Comment: MNRAS accepted, 24 pages, 12 figure
The Centaurus A Northern Middle Lobe as a Buoyant Bubble
We model the northern middle radio lobe of Centaurus A (NGC 5128) as a
buoyant bubble of plasma deposited by an intermittently active jet. The extent
of the rise of the bubble and its morphology imply that the ratio of its
density to that of the surrounding ISM is less than 10^{-2}, consistent with
our knowledge of extragalactic jets and minimal entrainment into the precursor
radio lobe. Using the morphology of the lobe to date the beginning of its rise
through the atmosphere of Centaurus A, we conclude that the bubble has been
rising for approximately 140Myr. This time scale is consistent with that
proposed by Quillen et al. (1993) for the settling of post-merger gas into the
presently observed large scale disk in NGC 5128, suggesting a strong connection
between the delayed re-establishment of radio emission and the merger of NGC
5128 with a small gas-rich galaxy. This suggests a connection, for radio
galaxies in general, between mergers and the delayed onset of radio emission.
In our model, the elongated X-ray emission region discovered by Feigelson et
al. (1981), part of which coincides with the northern middle lobe, is thermal
gas that originates from the ISM below the bubble and that has been uplifted
and compressed. The "large-scale jet" appearing in the radio images of Morganti
et al. (1999) may be the result of the same pressure gradients that cause the
uplift of the thermal gas, acting on much lighter plasma, or may represent a
jet that did not turn off completely when the northern middle lobe started to
buoyantly rise. We propose that the adjacent emission line knots (the "outer
filaments") and star-forming regions result from the disturbance, in particular
the thermal trunk, caused by the bubble moving through the extended atmosphere
of NGC 5128.Comment: 38 pages, 13 figures, submitted to ApJ; a version with higher
resolution figures is available at
http://www.mso.anu.edu.au/~saxton/papers/cena.pd
Stability analyses of two-temperature radiative shocks: formulation, eigenfunctions, luminosity response and boundary conditions
We present a general formulation for stability analyses of radiative shocks
with multiple cooling processes, longitudinal and transverse perturbations, and
unequal electron and ion temperatures. Using the accretion shocks of magnetic
cataclysmic variables as an illustrative application, we investigate the shock
instabilities by examining the eigenfunctions of the perturbed hydrodynamic
variables. We also investigate the effects of varying the condition at the
lower boundary of the post-shock flow from a zero-velocity fixed wall to
several alternative type of boundaries involving the perturbed hydrodynamic
variables, and the variations of the emission from the post-shock flow under
different modes of oscillations. We found that the stability properties for
flow with a stationary-wall lower boundary are not significantly affected by
perturbing the lower boundary condition, and they are determined mainly by the
energy-transport processes. Moreover, there is no obvious correlation between
the amplitude or phase of the luminosity response and the stability properties
of the system. Stability of the system can, however, be modified in the
presence of transverse perturbation. The luminosity responses are also altered
by transverse perturbation.Comment: 26 pages, 21 figures, MNRAS in pres
Interactions of Jets with Inhomogeneous Cloudy Media
We present two-dimensional slab-jet simulations of jets in inhomogeneous
media consisting of a tenuous hot medium populated with a small filling factor
by warm, dense clouds. The simulations are relevant to the structure and
dynamics of sources such as Gigahertz Peak Spectrum and Compact Steep Spectrum
radio galaxies, High Redshift Radio Galaxies and radio galaxies in cooling
flows. The jets are disrupted to a degree depending upon the filling factor of
the clouds. With a small filling factor, the jet retains some forward momentum
but also forms a halo or bubble around the source. At larger filling factors
channels are formed in the cloud distribution through which the jet plasma
flows and a hierarchical structure consisting of nested lobes and an outer
enclosing bubble results. We suggest that the CSS quasar 3C48 is an example of
a low filling factor jet - interstellar medium interaction whilst M87 may be an
example of the higher filling factor type of interaction. Jet disruption occurs
primarily as a result of Kelvin-Helmholtz instabilities driven by turbulence in
the radio cocoon not through direct jet-cloud interactions, although there are
some examples of these. In all radio galaxies whose morphology may be the
result of jet interactions with an inhomogeneous interstellar medium we expect
that the dense clouds will be optically observable as a result of radiative
shocks driven by the pressure of the radio cocoon. We also expect that the
radio galaxies will possess faint haloes of radio emitting material well beyond
the observable jet structure.Comment: 21 pages, 16 figures, submitted to MNRAS. A version with full
resolution figures is available at:
http://www.mssl.ucl.ac.uk/~cjs2/pdf/cloudy_hue.pd
High-energy neutrino fluxes from AGN populations inferred from X-ray surveys
High-energy neutrinos and photons are complementary messengers, probing
violent astrophysical processes and structural evolution of the Universe. X-ray
and neutrino observations jointly constrain conditions in active galactic
nuclei (AGN) jets: their baryonic and leptonic contents, and particle
production efficiency. Testing two standard neutrino production models for
local source Cen A \citep{KT2008,BB2009}, we calculate the high-energy neutrino
spectra of single AGN sources and derive the flux of high-energy neutrinos
expected for the current epoch. Assuming that accretion determines both X-rays
and particle creation, our parametric scaling relations predict neutrino yield
in various AGN classes. We derive redshift-dependent number densities of each
class, from {\it Chandra} and {\it Swift}/BAT X-ray luminosity functions
\citep{SGB2008,ACS2009}. We integrate the neutrino spectrum expected from the
cumulative history of AGN (correcting for cosmological and source effects, e.g.
jet orientation and beaming). Both emission scenarios yield neutrino fluxes
well above limits set by {\it IceCube} (by -- at 1 PeV,
depending on the assumed jet models for neutrino production). This implies
that: (i) Cen A might not be a typical neutrino source as commonly assumed;
(ii) both neutrino production models overestimate the efficiency; (iii)
neutrino luminosity scales with accretion power differently among AGN classes
and hence does not follow X-ray luminosity universally; (iv) some AGN are
neutrino-quiet (e.g. below a power threshold for neutrino production); (v)
neutrino and X-ray emission have different duty cycles (e.g. jets alternate
between baryonic and leptonic flows); or (vi) some combination of the above.Comment: 16 pages, 6 figures, 3 tables, accepted for publication in MNRA
Effects of lower boundary conditions on the stability of radiative shocks
Thermal instabilities can cause a radiative shock to oscillate, thereby
modulating the emission from the post-shock region. The mode frequencies are
approximately quantised in analogy to those of a vibrating pipe. The stability
properties depend on the cooling processes, the electron-ion energy exchange
and the boundary conditions. This paper considers the effects of the lower
boundary condition on the post-shock flow, both ideally and for some specific
physical models. Specific cases include constant perturbed velocity, pressure,
density, flow rate, or temperature at the lower boundary, and the situation
with nonzero stationary flow velocity at the lower boundary. It is found that
for cases with zero terminal stationary velocity, the stability properties are
insensitive to the perturbed hydrodynamic variables at the lower boundary. The
luminosity responses are generally dependent on the lower boundary condition.Comment: 17 pages, 2 figures, 3 tables; PASA in pres
- âŠ