69 research outputs found

    Dark matter concentrations in galactic nuclei according to polytropic models

    Get PDF
    We calculate the radial profiles of galaxies where the nuclear region is self-gravitating, consisting of self-interacting dark matter (SIDM) with FF degrees of freedom. For sufficiently high density this dark matter becomes collisional, regardless of its behaviour on galaxy scales. Our calculations show a spike in the central density profile, with properties determined by the dark matter microphysics, and the densities can reach the `mean density' of a black hole (from dividing the black-hole mass by the volume enclosed by the Schwarzschild radius). For a galaxy halo of given compactness (χ=2GM/Rc2\chi=2GM/Rc^2), certain values for the dark matter entropy yield a dense central object lacking an event horizon. For some soft equations of state of the SIDM (e.g. F≄6F\ge6), there are multiple horizonless solutions at given compactness. Although light propagates around and through a sphere composed of dark matter, it is gravitationally lensed and redshifted. While some calculations give non-singular solutions, others yield solutions with a central singularity. In all cases the density transitions smoothly from the central body to the dark-matter envelope around it, and to the galaxy's dark matter halo. We propose that pulsar timing observations will be able to distinguish between systems with a centrally dense dark matter sphere (for different equations of state) and conventional galactic nuclei that harbour a supermassive black hole.Comment: MNRAS accepted, 24 pages, 12 figure

    The Centaurus A Northern Middle Lobe as a Buoyant Bubble

    Get PDF
    We model the northern middle radio lobe of Centaurus A (NGC 5128) as a buoyant bubble of plasma deposited by an intermittently active jet. The extent of the rise of the bubble and its morphology imply that the ratio of its density to that of the surrounding ISM is less than 10^{-2}, consistent with our knowledge of extragalactic jets and minimal entrainment into the precursor radio lobe. Using the morphology of the lobe to date the beginning of its rise through the atmosphere of Centaurus A, we conclude that the bubble has been rising for approximately 140Myr. This time scale is consistent with that proposed by Quillen et al. (1993) for the settling of post-merger gas into the presently observed large scale disk in NGC 5128, suggesting a strong connection between the delayed re-establishment of radio emission and the merger of NGC 5128 with a small gas-rich galaxy. This suggests a connection, for radio galaxies in general, between mergers and the delayed onset of radio emission. In our model, the elongated X-ray emission region discovered by Feigelson et al. (1981), part of which coincides with the northern middle lobe, is thermal gas that originates from the ISM below the bubble and that has been uplifted and compressed. The "large-scale jet" appearing in the radio images of Morganti et al. (1999) may be the result of the same pressure gradients that cause the uplift of the thermal gas, acting on much lighter plasma, or may represent a jet that did not turn off completely when the northern middle lobe started to buoyantly rise. We propose that the adjacent emission line knots (the "outer filaments") and star-forming regions result from the disturbance, in particular the thermal trunk, caused by the bubble moving through the extended atmosphere of NGC 5128.Comment: 38 pages, 13 figures, submitted to ApJ; a version with higher resolution figures is available at http://www.mso.anu.edu.au/~saxton/papers/cena.pd

    Stability analyses of two-temperature radiative shocks: formulation, eigenfunctions, luminosity response and boundary conditions

    Get PDF
    We present a general formulation for stability analyses of radiative shocks with multiple cooling processes, longitudinal and transverse perturbations, and unequal electron and ion temperatures. Using the accretion shocks of magnetic cataclysmic variables as an illustrative application, we investigate the shock instabilities by examining the eigenfunctions of the perturbed hydrodynamic variables. We also investigate the effects of varying the condition at the lower boundary of the post-shock flow from a zero-velocity fixed wall to several alternative type of boundaries involving the perturbed hydrodynamic variables, and the variations of the emission from the post-shock flow under different modes of oscillations. We found that the stability properties for flow with a stationary-wall lower boundary are not significantly affected by perturbing the lower boundary condition, and they are determined mainly by the energy-transport processes. Moreover, there is no obvious correlation between the amplitude or phase of the luminosity response and the stability properties of the system. Stability of the system can, however, be modified in the presence of transverse perturbation. The luminosity responses are also altered by transverse perturbation.Comment: 26 pages, 21 figures, MNRAS in pres

    Interactions of Jets with Inhomogeneous Cloudy Media

    Full text link
    We present two-dimensional slab-jet simulations of jets in inhomogeneous media consisting of a tenuous hot medium populated with a small filling factor by warm, dense clouds. The simulations are relevant to the structure and dynamics of sources such as Gigahertz Peak Spectrum and Compact Steep Spectrum radio galaxies, High Redshift Radio Galaxies and radio galaxies in cooling flows. The jets are disrupted to a degree depending upon the filling factor of the clouds. With a small filling factor, the jet retains some forward momentum but also forms a halo or bubble around the source. At larger filling factors channels are formed in the cloud distribution through which the jet plasma flows and a hierarchical structure consisting of nested lobes and an outer enclosing bubble results. We suggest that the CSS quasar 3C48 is an example of a low filling factor jet - interstellar medium interaction whilst M87 may be an example of the higher filling factor type of interaction. Jet disruption occurs primarily as a result of Kelvin-Helmholtz instabilities driven by turbulence in the radio cocoon not through direct jet-cloud interactions, although there are some examples of these. In all radio galaxies whose morphology may be the result of jet interactions with an inhomogeneous interstellar medium we expect that the dense clouds will be optically observable as a result of radiative shocks driven by the pressure of the radio cocoon. We also expect that the radio galaxies will possess faint haloes of radio emitting material well beyond the observable jet structure.Comment: 21 pages, 16 figures, submitted to MNRAS. A version with full resolution figures is available at: http://www.mssl.ucl.ac.uk/~cjs2/pdf/cloudy_hue.pd

    High-energy neutrino fluxes from AGN populations inferred from X-ray surveys

    Get PDF
    High-energy neutrinos and photons are complementary messengers, probing violent astrophysical processes and structural evolution of the Universe. X-ray and neutrino observations jointly constrain conditions in active galactic nuclei (AGN) jets: their baryonic and leptonic contents, and particle production efficiency. Testing two standard neutrino production models for local source Cen A \citep{KT2008,BB2009}, we calculate the high-energy neutrino spectra of single AGN sources and derive the flux of high-energy neutrinos expected for the current epoch. Assuming that accretion determines both X-rays and particle creation, our parametric scaling relations predict neutrino yield in various AGN classes. We derive redshift-dependent number densities of each class, from {\it Chandra} and {\it Swift}/BAT X-ray luminosity functions \citep{SGB2008,ACS2009}. We integrate the neutrino spectrum expected from the cumulative history of AGN (correcting for cosmological and source effects, e.g. jet orientation and beaming). Both emission scenarios yield neutrino fluxes well above limits set by {\it IceCube} (by ∌4\sim 4--106×10^6 \times at 1 PeV, depending on the assumed jet models for neutrino production). This implies that: (i) Cen A might not be a typical neutrino source as commonly assumed; (ii) both neutrino production models overestimate the efficiency; (iii) neutrino luminosity scales with accretion power differently among AGN classes and hence does not follow X-ray luminosity universally; (iv) some AGN are neutrino-quiet (e.g. below a power threshold for neutrino production); (v) neutrino and X-ray emission have different duty cycles (e.g. jets alternate between baryonic and leptonic flows); or (vi) some combination of the above.Comment: 16 pages, 6 figures, 3 tables, accepted for publication in MNRA

    Effects of lower boundary conditions on the stability of radiative shocks

    Get PDF
    Thermal instabilities can cause a radiative shock to oscillate, thereby modulating the emission from the post-shock region. The mode frequencies are approximately quantised in analogy to those of a vibrating pipe. The stability properties depend on the cooling processes, the electron-ion energy exchange and the boundary conditions. This paper considers the effects of the lower boundary condition on the post-shock flow, both ideally and for some specific physical models. Specific cases include constant perturbed velocity, pressure, density, flow rate, or temperature at the lower boundary, and the situation with nonzero stationary flow velocity at the lower boundary. It is found that for cases with zero terminal stationary velocity, the stability properties are insensitive to the perturbed hydrodynamic variables at the lower boundary. The luminosity responses are generally dependent on the lower boundary condition.Comment: 17 pages, 2 figures, 3 tables; PASA in pres
    • 

    corecore