103 research outputs found

    Changing use of surgical antibiotic prophylaxis in Thika Hospital, Kenya: a quality improvement intervention with an interrupted time series design.

    Get PDF
    INTRODUCTION: In low-income countries, Surgical Site Infection (SSI) is a common form of hospital-acquired infection. Antibiotic prophylaxis is an effective method of preventing these infections, if given immediately before the start of surgery. Although several studies in Africa have compared pre-operative versus post-operative prophylaxis, there are no studies describing the implementation of policies to improve prescribing of surgical antibiotic prophylaxis in African hospitals. METHODS: We conducted SSI surveillance at a typical Government hospital in Kenya over a 16 month period between August 2010 and December 2011, using standard definitions of SSI and the extent of contamination of surgical wounds. As an intervention, we developed a hospital policy that advised pre-operative antibiotic prophylaxis and discouraged extended post-operative antibiotics use. We measured process, outcome and balancing effects of this intervention in using an interrupted time series design. RESULTS: From a starting point of near-exclusive post-operative antibiotic use, after policy introduction in February 2011 there was rapid adoption of the use of pre-operative antibiotic prophylaxis (60% of operations at 1 week; 98% at 6 weeks) and a substantial decrease in the use of post-operative antibiotics (40% of operations at 1 week; 10% at 6 weeks) in Clean and Clean-Contaminated surgery. There was no immediate step-change in risk of SSI, but overall, there appeared to be a moderate reduction in the risk of superficial SSI across all levels of wound contamination. There were marked reductions in the costs associated with antibiotic use, the number of intravenous injections performed and nursing time spent administering these. CONCLUSION: Implementation of a locally developed policy regarding surgical antibiotic prophylaxis is an achievable quality improvement target for hospitals in low-income countries, and can lead to substantial benefits for individual patients and the institution

    The effects on chronic periodontitis of a subgingivally-placed redox agent in a slow release device

    Get PDF
    Adjunctive chemical agents can reduce the need for meticulous plaque control. The aim of this investigation was to evaluate the periodontal treatment potential of subgingival application of the redox agent methylene blue in a slow release device. This randomized, single-blind, split-mouth study included 18 patients aged 35- 57 years, with chronic adult periodontitis, pocketing of at least 5mm and radiographic evidence of regular bone loss. All experimental sites received subgingival debridement at day 0. Test sites received 32% w/w methylene blue in the slow release device at days 0 and 28. Clinical examination and microbiological sampling were performed at days 0, 7, 28, 56 and 84. Clinical improvements were seen in both groups, but test sites showed consistently greater improvements, some of which were statistically significant (as determined by between-group comparisons utilising SNDs). Significant between-group differences in relation to baseline levels were seen in bleeding index at days 7 and 56, in probable pocket depth at day 56 and for the Perioscan BANA test at day 7. This pilot study thus showed that adjunctive methylene blue in a slow-release device can produce greater clinical and microbiological improvements than subgingival debridement alone.peer-reviewe

    Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes

    Get PDF
    Gas separation membranes are one of the lowest energy technologies available for the separation of carbon dioxide from flue gas. Key to handling the immense scale of this separation is maximised membrane permeability at sufficient selectivity for CO2 over N2. For the first time it is revealed that metals can be post-synthetically exchanged in MOFs to drastically enhance gas transport performance in membranes. Ti-exchanged UiO-66 MOFs have been found to triple the gas permeability without a loss in selectivity due to several effects that include increased affinity for CO2 and stronger interactions between the polymer matrix and the Ti-MOFs. As a result, it is also shown that MOFs optimized in previous works for batch-wise adsorption applications can be applied to membranes, which have lower demands on material quantities. These membranes exhibit exceptional CO2 permeability enhancement of as much as 153% when compared to the non-exchanged UiO-66 mixed-matrix controls, which places them well above the Robeson upper bound at just a 5 wt.% loading. The fact that maximum permeability enhancement occurs at such low loadings, significantly less than the optimum for other MMMs, is a major advantage in large-scale application due to the more attainable quantities of MOF needed
    corecore