1,936 research outputs found

    Possible competition between superconductivity and magnetism in RuSr<SUB>2</SUB>Gd<SUB>1.5</SUB>Ce<SUB>0.5</SUB>Cu<SUB>2</SUB>O<SUB>10-&#948;</SUB> ruthenocuprate compounds

    Get PDF
    The RuSr2Gd1.5Ce0.5Cu2O10-&#948; (Ru-1222) compounds, with varying oxygen content, crystallize in a tetragonal crystal structure (space group I4/mmm). Resistance (R) versus temperature (T) measurements show that the air-annealed samples exhibit superconductivity with superconduting transition temperature (Tc) onset at around 32 K and R=0 at 3.5 K. On the other hand, the N2-annealed sample is semiconducting down to 2 K. Magneto-transport measurements on an air-annealed sample in applied magnetic fields of 3 and 6 T (Tesla) show a decrease in both Tc onset and TR=0. Magnetoresistance of up to 20% is observed in the N2-annealed sample at 2 K and 3 T applied field. The dc magnetization data (M vs T) reveal magnetic transitions (Tmag) at 100 K and 106 K, respectively, for both air- and N2-annealed samples. Ferromagnetic components in the magnetization are observed for both samples at 5 K and 20 K. The superconducting transition temperature (Tc) seems to compete with the magnetic transition temperature (Tmag). Our results suggest that the magnetic ordering temperature (Tmag) of Ru moments in RuO6 octahedra may have direct influence/connection with the appearance of superconductivity in Cu-O2 planes of Ru-1222 compounds

    A novel mitochondrial orf147 causes cytoplasmic male sterility in pigeonpea by modulating aberrant anther dehiscence

    Get PDF
    Key message A novel open reading frame (ORF) identified and cloned from the A4 cytoplasm of Cajanus cajanifolius induced partial to complete male sterility when introduced into Arabidopsis and tobacco. Abstract Pigeonpea (Cajanus cajan L. Millsp.) is the only legume known to have commercial hybrid seed technology based on cytoplasmic male sterility (CMS). We identified a novel ORF (orf147) from the A4 cytoplasm of C. cajanifolius that was created via rearrangements in the CMS line and co-transcribes with the known and unknown sequences. The bi/poly-cistronic transcripts cause gain-of-function variants in the mitochondrial genome of CMS pigeonpea lines having distinct processing mechanisms and transcription start sites. In presence of orf147, significant repression of Escherichia coli growth indicated its toxicity to the host cells and induced partial to complete male sterility in transgenic progenies of Arabidopsis thaliana and Nicotiana tabacum where phenotype co-segregated with the transgene. The male sterile plants showed aberrant floral development and reduced lignin content in the anthers. Gene expression studies in male sterile pigeonpea, Arabidopsis and tobacco plants confirmed down-regulation of several anther biogenesis genes and key genes involved in monolignol biosynthesis, indicative of regulation of retrograde signaling. Besides providing evidence for the involvement of orf147 in pigeonpea CMS, this study provides valuable insights into its function. Cytotoxicity and aberrant programmed cell death induced by orf147 could be important for mechanism underlying male sterility that offers opportunities for possible translation for these findings for exploiting hybrid vigor in other recalcitrant crops as well

    Enhancing the livelihoods of Uttarakhand farmers by introducing pigeonpea cultivation in hilly areas

    Get PDF
    Pilot production demonstrations conducted in Uttarakhand state of India indicated that pigeonpea [Cajanus cajan (L.) Millsp.] variety ‘VL Arhar-1’ (ICPL 88039) can be grown successfully up to the elevations of 2,000 metres. This extrashort duration pigeonpea variety is well-adapted to the agroecological conditions of Uttarakhand, and suitable for grain production (up to 1,800 kg/ha) and for soil conservation. The cultivation of pigeonpea, therefore, can be extended into areas predominantly characterized by low soil fertility and inhabited by resource poor farmers. The introduction of pigeonpea in the hills of the Himalayas will help in promoting sustainable and eco-friendly agricultural practices that are cost effective and easy to adopt by the poor farming community. Pigeonpea, being a good source of home-grown high protein food, would directly benefit the nutrition, health and livelihoods of small holder farmers of Uttarakhand. Hence, it is recommended that sincere efforts should be made to promote the cultivation of pigeonpea on a large scale in the slopes and waste lands of this state, and possibly on the hilly areas in India

    Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework

    Get PDF
    Brain tumor characterization (BTC) is the process of knowing the underlying cause of brain tumors and their characteristics through various approaches such as tumor segmentation, classification, detection, and risk analysis. The substantial brain tumor characterization includes the identification of the molecular signature of various useful genomes whose alteration causes the brain tumor. The radiomics approach uses the radiological image for disease characterization by extracting quantitative radiomics features in the artificial intelligence (AI) environment. However, when considering a higher level of disease characteristics such as genetic information and mutation status, the combined study of “radiomics and genomics” has been considered under the umbrella of “radiogenomics”. Furthermore, AI in a radiogenomics’ environment offers benefits/advantages such as the finalized outcome of personalized treatment and individualized medicine. The proposed study summarizes the brain tumor’s characterization in the prospect of an emerging field of research, i.e., radiomics and radiogenomics in an AI environment, with the help of statistical observation and risk-of-bias (RoB) analysis. The PRISMA search approach was used to find 121 relevant studies for the proposed review using IEEE, Google Scholar, PubMed, MDPI, and Scopus. Our findings indicate that both radiomics and radiogenomics have been successfully applied aggressively to several oncology applications with numerous advantages. Furthermore, under the AI paradigm, both the conventional and deep radiomics features have made an impact on the favorable outcomes of the radiogenomics approach of BTC. Furthermore, risk-of-bias (RoB) analysis offers a better understanding of the architectures with stronger benefits of AI by providing the bias involved in them

    Birefringence analysis of multilayer leaky cladding optical fibre

    Get PDF
    We analyse a multilayer leaky cladding (MLC) fibre using the finite element method and study the effect of the MLC on the bending loss and birefringence of two types of structures: (i) a circular core large-mode-area structure and (ii) an elliptical-small-core structure. In a large-mode-area structure, we verify that the multilayer leaky cladding strongly discriminates against higher order modes to achieve single-mode operation, the fibre shows negligible birefringence, and the bending loss of the fibre is low for bending radii larger than 10 cm. In the elliptical-small-core structure we show that the MLC reduces the birefringence of the fibre. This prevents the structure from becoming birefringent in case of any departures from circular geometry. The study should be useful in the designs of MLC fibres for various applications including high power amplifiers, gain flattening of fibre amplifiers and dispersion compensation.Comment: 18 page

    Impact of Zn substitution on phase formation and superconductivity of Bi1.6Pb0.4 Sr2Ca2Cu3-xZnxO10 with x = 0.0, 0.015, 0.03, 0.06, 0.09 and 0.12

    Full text link
    Samples of series Bi1.6Pb0.4Sr2Ca2Cu3-xZnxO10 with x = 0.0, 0.015, 0.03, 0.06, 0.09 and 0.12 are synthesized by solid-state reaction route. All the samples crystallize in tetragonal structure with majority (> 90%) of Bi-2223 (Bi2Sr2Ca2Cu3O10) phase (c-lattice parameter ~ 36 A0). The proportion of Bi-2223 phase decreases slightly with an increase in x. The lattice parameters a and c of main phase (Bi-2223) do not change significantly with increasing x. Superconducting critical transition temperature (Tc) decreases with x as evidenced by both resistivity [(T)] and AC magnetic susceptibility [(T)] measurements. Interestingly the decrement of Tc is not monotonic and the same saturates at around 96 K for x > 0.06. In fact Tc decreases fast (~10K/at%) for x = 0.015 and 0.03 samples and later nearly saturates for higher x values. Present results of Zn doping in Bi-2223 system are compared with Zn doped other HTSC (High temperature superconducting) systems, namely the RE-123 (REBa2Cu3O7) and La-214 ((La,Sr)2CuO4).Comment: 12, pages of text and Figs. TO APPEAR IN Mod. Phys. Lett. B (2005)
    corecore