10,572 research outputs found

    External store effects on the stability of fighter and interceptor airplanes

    Get PDF
    Some criteria for external carriage of missiles for fighter aircraft intended for aerial combat missions and for fighter-interceptor missions are considered. The mission requirements discussed include the short-range fighter-interceptor, the short-range interceptor, the medium-range interceptor, and the long-range interceptor. Missiles types considered to be compatible with the various point mission designs include the short-range missile, the medium-range missile, and the long-range missile. From the study, it appears that point mission design aircraft can be arranged in such a way that the required external-store arrangement will not impair the stability of the aircraft. An extensive reference list of NASA external store research is included

    Inclusion of explicit thermal requirements in optimum structural design

    Get PDF
    A finite-element based procedure is described for obtaining minimum mass designs of structures subjected to combined thermal and mechanical loading and both strength and thermal constraints. The procedure is based on a mathematical programming method using the Sequence of Unconstrained Minimizations Technique (SUMT) in which design requirements are incorporated by an exterior penalty function. The procedure is limited to steady-state temperatures which are controlled by structural sizing only. The optimization procedure is demonstrated by the design of a structural wing box with both mechanical loading and external heating, subject to design constraints on stress, minimum gage, and temperature. The final design for these conditions is compared with a corresponding design in which temperature constraints are omitted

    A computer graphics program for general finite element analyses

    Get PDF
    Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program

    Feasibility of obtaining hypervelocity acceleration using propellant lined launch tubes Final report, 27 Sep. 1966 - 5 May 1970

    Get PDF
    Feasibility of explosive lining in launch tube for hypervelocity projectile acceleratio

    Effectiveness of nurse home-visiting for disadvantaged families: results of a natural experiment

    Get PDF
    Extent: 9p.Objective: To evaluate the effects of a postnatal home-visiting programme delivered by community health nurses to socially disadvantaged mothers in South Australia. Design: The intervention group of 428 mothers lived in metropolitan Adelaide and the comparison group of 239 mothers lived in regional towns where the programme was not yet available. All participating mothers met health service eligibility criteria for enrolment in the home-visiting programme. Participants in both groups were assessed at baseline (mean child age=14.4 weeks SD=2.3), prior to programme enrolment, and again when the children were aged 9, 18 and 24 months. Setting: State-wide community child health service. Participants: 667 socially disadvantaged mothers enrolled consecutively. 487 mothers (73%) completed the 24-month assessment. Intervention: Two-year postnatal home-visiting programme based on the Family Partnership Model. Primary outcome measures: Parent Stress Index (PSI), Kessler Psychological Distress Scale and the Ages and Stages Questionnaire. Results: Mixed models adjusting for baseline differences were used to compare outcomes in the two groups. The mothers in the home-visiting group reported greater improvement on the PSI subscales assessing a mother's perceptions on the quality of their relationship with their child (1.10, 95% CI 0.06 to 2.14) and satisfaction with their role as parents (0.46, 95% CI −0.15 to 1.07) than mothers in the comparison group. With the exception of childhood sleeping problems, there were no other significant differences in the outcomes across the two groups. Conclusions: The findings suggest that home-visiting programmes delivered by community health nurses as part of routine clinical practice have the potential to improve maternal–child relationships and help mothers adjust to their role as parents.Michael Gifford Sawyer, Linda Frost, Kerrie Bowering, John Lync

    A new quantity for studies of dijet azimuthal decorrelations

    Full text link
    We introduce a new measurable quantity, RΔϕR_{\Delta \phi}, for studies of the rapidity and transverse momentum dependence of dijet azimuthal decorrelations in hadron-hadron collisions. In pQCD, RΔϕR_{\Delta \phi} is computed as a ratio of three-jet and dijet cross sections in which the parton distribution functions cancel to a large extent. At the leading order, RΔϕR_{\Delta \phi} is proportional to αs\alpha_s, and the transverse momentum dependence of can therefore be exploited to determine αs\alpha_s. We compute the NLO pQCD theory predictions and non-perturbative corrections for RΔϕR_{\Delta \phi} at the LHC and the Tevatron and investigate the corresponding uncertainties. From this, we estimate the theory uncertainties for αs\alpha_s determinations based on RΔϕR_{\Delta \phi} at both colliders. The potential of RΔϕR_{\Delta \phi} measurements for tuning Monte Carlo event generators is also demonstrated.Comment: 20 pages, 11 figures, 1 table, submitted to JHE

    Completely modular Thermionic Reactor Ion Propulsion System (TRIPS)

    Get PDF
    The nuclear reactor powered ion propulsion system described is an advanced completely modularized system which lends itself to development of prototype and/or flight type components without the need for complete system tests until late in the development program. This modularity is achieved in all of the subsystems and components of the electric propulsion system including (1) the thermionic fuel elements, (2) the heat rejection subsystem (heat pipes), (3) the power conditioning modules, and (4) the ion thrusters. Both flashlight and external fuel type in-core thermionic reactors are considered as the power source. The thermionic fuel elements would be useful over a range of reactor power levels. Electrical heated acceptance testing in their flight configuration is possible for the external fuel case. Nuclear heated testing by sampling methods could be used for acceptance testing of flashlight fuel elements. The use of heat pipes for cooling the collectors and as a means of heat transport to the radiator allows early prototype or flight configuration testing of a small module of the heat rejection subsystem as opposed to full scale liquid metal pumps and radiators in a large vacuum chamber. The power conditioner (p/c) is arranged in modules with passive cooling

    Experimental and theoretical supersonic lateral-directional stability characteristics of a simplified wing-body configuration with a series of vertical-tail arrangements

    Get PDF
    An experimental investigation was conducted to provide a systematic set of lateral-directional stability data for a simplified wing-body model with a series of vertical-tail arrangements. The study was made at Mach numbers from 1.60 to 2.86 at nominal angles of attack from -8 to 12 deg and Reynolds number of 8.2 million per meter. Comparisons at zero angle of attack were made with three existing theoretical methods (MISLIFT - a second-order shock expansion and panel method; APAS - a slender body and first order panel method; and PAN AIR - a higher order panel method) and comparisons at angle of attack were made with PAN AIR. The results show that PAN AIR generally provides accurate estimates of these characteristics at moderate angles of attack for complete configurations with either single or twin vertical tails. APAS provides estimates for complete configurations at zero angle of attack. However, MISLIFT only provides estimates for the simplest body-vertical-tail configurations at zero angle of attack

    Derivation and test of elevated temperature thermal-stress-free fastener concept

    Get PDF
    Future aerospace vehicles must withstand high temperatures and be able to function over a wide temperature range. New composite materials are being developed for use in designing high-temperature lightweight structures. Due to the difference between coefficients of thermal expansion for the new composite materials and conventional high-temperature metallic fasteners, innovative joining techniques are needed to produce tight joints at all temperatures without excessive thermal stresses. A thermal-stress-free fastening technique is presented that can be used to provide structurally tight joints at all temperatures even when the fastener and joined materials have different coefficients of thermal expansion. The derivation of thermal-stress-free fasteners and joint shapes is presented for a wide variety of fastener materials and materials being joined together. Approximations to the thermal-stress-free shapes that result in joints with low-thermal-stresses and that simplify the fastener/joint shape are discussed. The low-thermal-stress fastener concept is verified by thermal and shear tests in joints using oxide-dispersion-strengthened alloy fasteners in carbon-carbon material. The test results show no evidence of thermal stress damage for temperatures up to 2000 F and the resulting joints carried shear loads at room temperature typical of those for conventional joints
    • …
    corecore