285 research outputs found

    Genomic organization and molecular phylogenies of the beta (β) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution

    Get PDF
    Abstract Background The epidermal appendages of reptiles and birds are constructed of beta (β) keratins. The molecular phylogeny of these keratins is important to understanding the evolutionary origin of these appendages, especially feathers. Knowing that the crocodilian β-keratin genes are closely related to those of birds, the published genomes of the chicken and zebra finch provide an opportunity not only to compare the genomic organization of their β-keratins, but to study their molecular evolution in archosaurians. Results The subfamilies (claw, feather, feather-like, and scale) of β-keratin genes are clustered in the same 5' to 3' order on microchromosome 25 in chicken and zebra finch, although the number of claw and feather genes differs between the species. Molecular phylogenies show that the monophyletic scale genes are the basal group within birds and that the monophyletic avian claw genes form the basal group to all feather and feather-like genes. Both species have a number of feather clades on microchromosome 27 that form monophyletic groups. An additional monophyletic cluster of feather genes exist on macrochromosome 2 for each species. Expression sequence tag analysis for the chicken demonstrates that all feather β-keratin clades are expressed. Conclusions Similarity in the overall genomic organization of β-keratins in Galliformes and Passeriformes suggests similar organization in all Neognathae birds, and perhaps in the ancestral lineages leading to modern birds, such as the paravian Anchiornis huxleyi. Phylogenetic analyses demonstrate that evolution of archosaurian epidermal appendages in the lineage leading to birds was accompanied by duplication and divergence of an ancestral β-keratin gene cluster. As morphological diversification of epidermal appendages occurred and the β-keratin multigene family expanded, novel β-keratin genes were selected for novel functions within appendages such as feathers.</p

    Rearrangement of the Keratin Cytoskeleton after Combined Treatment with Microtubule and Microfilament Inhibitors

    Get PDF
    In addition to containing microtubule and microfilament systems, vertebrate epithelial cells contain an elaborate keratin intermediate-filament cytoskeleton. Little is known about its structural organization or function. Using indirect immunofluorescence microscopy with an antikeratin antiserum probe, we found that destabilization of microtubules and microfilaments with cytostatic drugs induces significant alterations in the cytoskeletal organizationof keratin filaments in HeLa and fetal mouse epidermal cells. Keratin filament organizationwas observed to undergo a rapid (1-2 h) transition from a uniform distribution to an open lattice of keratin fibers stabilized by membrane-associated focal centers . Since addition of any one drug alone did not elicit significant organizational change in the keratin cytoskeleton,we suggest that microfilaments and microtubules have a combined role in maintaining the arrangement of keratin in these cells. Vimentin filaments, the only other intermediate sized filaments found in HeLa cells, did not co-distribute with keratin in untreated or drug treated cells. These findings offer a new way to approach the study of the dynamics and functional roles of the keratin cytoskeleton in epithelial cells

    Morphogenesis and Malformations of the Skin NICHD/NIADDK Research Workshop

    Get PDF
    Developmentally caused skin malformations constitute a spectrum of birth defects, some of which can be recognized prenatally by morphologic or biochemical means. The number of prenatally diagnosable skin diseases could be greatly expanded with an increased understanding of the molecular and cellular bases of skin development and the mechanisms that result in the generation of skin defects. The National Institute of Child Health and Human Development and the National Institute of Arthritis, Diabetes, Digestive and Kidney Diseases, therefore, sponsored a workshop that recommended basic biologic studies combined with clinical investigations of normal and abnormal cutaneous development set forth in this article. Investigations resulting from these research recommendations are intended to contribute to the knowledge that should aid in the prevention of developmentally caused skin deformities

    Complex Gene Loss and Duplication Events Have Facilitated the Evolution of Multiple Loricrin Genes in Diverse Bird Species

    Get PDF
    The evolution of a mechanically resilient epidermis was a key adaptation in the transition of amniotes to a fully terrestrial lifestyle. Skin appendages usually form via a specialized type of programmed cell death known as cornification which is characterized by the formation of an insoluble cornified envelope (CE). Many of the substrates of cornification are encoded by linked genes located at a conserved genetic locus known as the epidermal differentiation complex (EDC). Loricrin is the main protein component of the mammalian CE and is encoded for by a gene located within the EDC. Recently, genes resembling mammalian loricrin, along with several other proteins most likely involved in CE formation, have been identified within the EDC of birds and several reptiles. To better understand the evolution and function of loricrin in birds, we screened the genomes of 50 avian species and 3 crocodilians to characterize their EDC regions. We found that loricrin is present within the EDC of all species investigated, and that three loricrin genes were present in birds. Phylogenetic and molecular evolution analyses found evidence that gene deletions and duplications as well as concerted evolution has shaped the evolution of avian loricrins. Our results suggest a complex evolutionary history of avian loricrins which has accompanied the evolution of bird species with diverse morphologies and lifestyles

    Effect of the COVID-19 Pandemic on Patient Volumes, Acuity, and Outcomes in Pediatric Emergency Departments: A Nationwide Study

    Get PDF
    Objectives The aim of this study was to quantify the effect of the COVID-19 pandemic on pediatric emergency department (ED) utilization and outcomes. Methods This study is an interrupted-Time-series observational study of children presenting to 11 Canadian tertiary-care pediatric EDs. Data were grouped into weeks in 3 study periods: prepandemic (January 1, 2018-January 27, 2020), peripandemic (January 28, 2020-March 10, 2020), and early pandemic (March 11, 2020-April 30, 2020). These periods were compared with the same time intervals in the 2 preceding calendar years. Primary outcomes were number of ED visits per week. The secondary outcomes were triage acuity, hospitalization, intensive care unit (ICU) admission, mortality, length of hospital stay, ED revisits, and visits for trauma and mental health concerns. Results There were 577,807 ED visits (median age, 4.5 years; 52.9% male). Relative to the prepandemic period, there was a reduction [-58%; 95% confidence interval (CI),-63% to-51%] in the number of ED visits during the early-pandemic period, with concomitant higher acuity. There was a concurrent increase in the proportion of ward [odds ratio (OR), 1.39; 95% CI, 1.32-1.45] and intensive care unit (OR, 1.20; 95% CI, 1.01-1.42) admissions, and trauma-related ED visits among children less than 10 years (OR, 1.51; 95% CI, 1.45-1.56). Mental health-related visits in children declined in the early-pandemic period (in \u3c10 years,-60%; 95% CI,-67% to-51%; in children ≥10 years:-56%; 95% CI,-63% to-47%) relative to the pre-COVID-19 period. There were no differences in mortality or length of stay; however, ED revisits within 72 hours were reduced during the early-pandemic period (percent change:-55%; 95% CI,-61% to-49%; P \u3c 0.001). Conclusions After the declaration of the COVID-19 pandemic, dramatic reductions in pediatric ED visits occurred across Canada. Children seeking ED care were sicker, and there was an increase in trauma-related visits among children more than 10 years of age, whereas mental health visits declined during the early-pandemic period. When faced with a future pandemic, public health officials must consider the impact of the illness and the measures implemented on children\u27s health and acute care needs

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A&gt;T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Genetic predisposition to ductal carcinoma in situ of the breast

    Get PDF
    Background: Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer. It is often associated with invasive ductal carcinoma (IDC), and is considered to be a non-obligate precursor of IDC. It is not clear to what extent these two forms of cancer share low-risk susceptibility loci, or whether there are differences in the strength of association for shared loci. Methods: To identify genetic polymorphisms that predispose to DCIS, we pooled data from 38 studies comprising 5,067 cases of DCIS, 24,584 cases of IDC and 37,467 controls, all genotyped using the iCOGS chip. Results: Most (67 %) of the 76 known breast cancer predisposition loci showed an association with DCIS in the same direction as previously reported for invasive breast cancer. Case-only analysis showed no evidence for differences between associations for IDC and DCIS after considering multiple testing. Analysis by estrogen receptor (ER) status confirmed that loci associated with ER positive IDC were also associated with ER positive DCIS. Analysis of DCIS by grade suggested that two independent SNPs at 11q13.3 near CCND1 were specific to low/intermediate grade DCIS (rs75915166, rs554219). These associations with grade remained after adjusting for ER status and were also found in IDC. We found no novel DCIS-specific loci at a genome wide significance level of P < 5.0x10-8. Conclusion: In conclusion, this study provides the strongest evidence to date of a shared genetic susceptibility for IDC and DCIS. Studies with larger numbers of DCIS are needed to determine if IDC or DCIS specific loci exist

    Systems Biology of the Clock in Neurospora crassa

    Get PDF
    A model-driven discovery process, Computing Life, is used to identify an ensemble of genetic networks that describe the biological clock. A clock mechanism involving the genes white-collar-1 and white-collar-2 (wc-1 and wc-2) that encode a transcriptional activator (as well as a blue-light receptor) and an oscillator frequency (frq) that encodes a cyclin that deactivates the activator is used to guide this discovery process through three cycles of microarray experiments. Central to this discovery process is a new methodology for the rational design of a Maximally Informative Next Experiment (MINE), based on the genetic network ensemble. In each experimentation cycle, the MINE approach is used to select the most informative new experiment in order to mine for clock-controlled genes, the outputs of the clock. As much as 25% of the N. crassa transcriptome appears to be under clock-control. Clock outputs include genes with products in DNA metabolism, ribosome biogenesis in RNA metabolism, cell cycle, protein metabolism, transport, carbon metabolism, isoprenoid (including carotenoid) biosynthesis, development, and varied signaling processes. Genes under the transcription factor complex WCC ( = WC-1/WC-2) control were resolved into four classes, circadian only (612 genes), light-responsive only (396), both circadian and light-responsive (328), and neither circadian nor light-responsive (987). In each of three cycles of microarray experiments data support that wc-1 and wc-2 are auto-regulated by WCC. Among 11,000 N. crassa genes a total of 295 genes, including a large fraction of phosphatases/kinases, appear to be under the immediate control of the FRQ oscillator as validated by 4 independent microarray experiments. Ribosomal RNA processing and assembly rather than its transcription appears to be under clock control, suggesting a new mechanism for the post-transcriptional control of clock-controlled genes
    • …
    corecore