1,741 research outputs found

    How Future Space-Based Weak Lensing Surveys Might Obtain Photometric Redshifts Independently

    Full text link
    We study how the addition of on-board optical photometric bands to future space-based weak lensing instruments could affect the photometric redshift estimation of galaxies, and hence improve estimations of the dark energy parameters through weak lensing. Basing our study on the current proposed Euclid configuration and using a mock catalog of galaxy observations, various on-board options are tested and compared with the use of ground-based observations from the Large Synoptic Survey Telescope (LSST) and Pan-STARRS. Comparisons are made through the use of the dark energy Figure of Merit, which provides a quantifiable measure of the change in the quality of the scientific results that can be obtained in each scenario. Effects of systematic offsets between LSST and Euclid photometric calibration are also studied. We find that adding two (U and G) or even one (U) on-board optical band-passes to the space-based infrared instrument greatly improves its photometric redshift performance, bringing it close to the level that would be achieved by combining observations from both space-based and ground-based surveys while freeing the space mission from reliance on external datasets.Comment: Accepted for publication in PASP. A high-quality version of Fig 1 can be found on http://www.ap.smu.ca/~sawicki/DEphoto

    Interval identification of FMR parameters for spin reorientation transition in (Ga,Mn)As

    Full text link
    In this work we report results of ferromagnetic resonance studies of a 6% 15 nm (Ga,Mn)As layer, deposited on (001)-oriented GaAs. The measurements were performed with in-plane oriented magnetic field, in the temperature range between 5K and 120K. We observe a temperature induced reorientation of the effective in-plane easy axis from [-110] to [110] direction close to the Curie temperature. The behavior of magnetization is described by anisotropy fields, H_{eff} (= 4\piM -H_{2\perp}), H_{2\parallel}, and H_{4\parallel}. In order to precisely investigate this reorientation, numerical values of anisotropy fields have been determined using powerful - but still largely unknown - interval calculations. In simulation mode this approach makes possible to find all the resonance fields for arbitrarily oriented sample, which is generally intractable analytically. In 'fitting' mode we effectively utilize full experimental information, not only those measurements performed in special, distinguished directions, to reliably estimate the values of important physical parameters as well as their uncertainties and correlations.Comment: 3 pages, 3 figures. Presented at The European Conference "Physics of Magnetism 2011" (PM'11), June 27 - July 1, 2011, Poznan, Polan

    Genetic analysis of non-recessive factors of resistance to diazinon in the SKA strain of the housefly (Musca domestica L)

    Get PDF
    RESP-560

    Using a Fermionic Ensemble of Systems to Determine Excited States

    Get PDF
    We discuss a new numerical method for the determination of excited states of a quantum system using a generalization of the Feynman-Kac formula. The method relies on introducing an ensemble of non-interacting identical systems with a fermionic statistics imposed on the systems as a whole, and on determining the ground state of this fermionic ensemble by taking the large time limit of the Euclidean kernel. Due to the exclusion principle, the ground state of an nn-system ensemble is realized by the set of individual systems occupying successively the nn lowest states, all of which can therefore be sampled in this way. To demonstrate how the method works, we consider a one-dimensional oscillator and a chain of harmonically coupled particles.Comment: 14 pages, Latex + 4 eps figure

    New Species of Amphipod Crustaceans in the Genera Tegano and Melita (Hadzioidea : Melitidae) From Subterranean Groundwaters in Guam, Palau, and the Philippines

    Get PDF
    Three new species of Tegano are described, two from caves on Panglao Island, Bohol, Philippines, and one from a cave on Peleliu Island, Palau. Sriha vagabunda from Sri Lanka is reassigned to the genus Tegano based primarily on the high degree of similarity between Sriha vagabunda and species of Tegano and the fact that these species exhibit a great deal of variation in the reduction of the mandibular palp. A new species of Melita with characters intermediate between those defining the genera Abludomelita, Melita, and Paraniphargus is described from a spring on Guam. The characters of the new species and studies by previous authors suggest that Abludomelita may not be as distinct from Melita as previously believed. The troglomorphic genus Paraniphargus from the Andaman Islands and Java is reevaluated and synonymized with Melita

    The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field

    Full text link
    The Hubble Deep Field (HDF) is the deepest set of multicolor optical photometric observations ever undertaken, and offers a valuable data set with which to study galaxy evolution. Combining the optical WFPC2 data with ground-based near-infrared photometry, we derive photometrically estimated redshifts for HDF galaxies with J<23.5. We demonstrate that incorporating the near-infrared data reduces the uncertainty in the estimated redshifts by approximately 40% and is required to remove systematic uncertainties within the redshift range 1<z<2. Utilizing these photometric redshifts, we determine the evolution of the comoving ultraviolet (2800 A) luminosity density (presumed to be proportional to the global star formation rate) from a redshift of z=0.5 to z=2. We find that the global star formation rate increases rapidly with redshift, rising by a factor of 12 from a redshift of zero to a peak at z~1.5. For redshifts beyond 1.5, it decreases monotonically. Our measures of the star formation rate are consistent with those found by Lilly et al. (1996) from the CFRS at z 2, and bridge the redshift gap between those two samples. The overall star formation or metal enrichment rate history is consistent with the predictions of Pei and Fall (1995) based on the evolving HI content of Lyman-alpha QSO absorption line systems.Comment: Latex format, 10 pages, 3 postscript figures. Accepted for publication in Ap J Letter

    System Identification Methods for Dynamic Testing of Fluid-Film Bearings

    Get PDF
    There are various system identification approaches typically used to extract the rotordynamic coefficients from simultaneously measured dynamic force and motion signals. Since the coefficient values extracted can vary significantly as a function of the system identification approach used, more attention is needed to treat this issue than is typically included in the rotor dynamics literature. This paper describes system identification and data reduction methods used for extracting rotordynamic coefficients of fluid-film journal bearings. Data is used from a test apparatus incorporating a double-spoolshaft spindle which permits independent control over the journal spin speed and the frequency of an adjustable-magnitude circular orbit, for both forward and backward whirling. For example, a least squares linear regression on the force-displacement equations of the experiment provides only one of the rational approaches to extract the anisotropic rotordynamic coefficients (stiffness, damping and fluid inertia effects). Rotordynamic coefficients are also extracted with both first and second order orbital frequency dependencies. To assess the quality of the measured signals, coherence functions are calculated to relate the time-averaged input motion signals and the time-averaged output force signals
    corecore