6 research outputs found

    Models of KPTN-related disorder implicate mTOR signalling in cognitive and overgrowth phenotypes

    Get PDF
    KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models.Kptn−/− mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants.Molecular and structural analysis of Kptn−/− mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1.By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.Genetics of disease, diagnosis and treatmen

    Gamma Aminobutyric Acidergic and Neuronal Structural Markers in the Nucleus Accumbens Core Underlie Trait-like Impulsive Behavior

    Get PDF
    Background: Pathological forms of impulsivity are manifest in a number of psychiatric disorders listed in DSM-5, including attentiondeficit/ hyperactivity disorder and substance use disorder. However, the molecular and cellular substrates of impulsivity are poorly understood. Here, we investigated a specific form of motor impulsivity in rats, namely premature responding, on a five-choice serial reaction time task. Methods: We used in vivo voxel-based magnetic resonance imaging and ex vivo Western blot analyses to investigate putative structural, neuronal, and glial protein markers in low-impulsive (LI) and high-impulsive rats. We also investigated whether messenger RNA interference targeting glutamate decarboxylase 65/67 (GAD65/67) gene expression in the nucleus accumbens core (NAcbC) is sufficient to increase impulsivity in LI rats. Results: We identified structural and molecular abnormalities in the NAcbC associated with motor impulsivity in rats. We report a reduction in gray matter density in the left NAcbC of high-impulsive rats, with corresponding reductions in this region of glutamate decarboxylase (GAD65/67) and markers of dendritic spines and microtubules. We further demonstrate that the experimental reduction of de novo of GAD65/67 expression bilaterally in the NAcbC is sufficient to increase impulsivity in LI rats. Conclusions: These results reveal a novel mechanism of impulsivity in rats involving gamma aminobutyric acidergic and structural abnormalities in the NAcbC with potential relevance to the etiology and treatment of attention-deficit/hyperactivity disorder and related disorders

    Magnetic resonance imaging of Huntington's disease: preparing for clinical trials

    Get PDF
    The known genetic mutation causing Huntington's disease (HD) makes this disease an important model to study links between gene and brain function. An autosomal dominant family history and the availability of a sensitive and specific genetic test allow pre-clinical diagnosis many years before the onset of any typical clinical signs. This review summarizes recent magnetic resonance imaging (MRI)–based findings in HD with a focus on the requirements if imaging is to be used in treatment trials. Despite its monogenetic cause, HD presents with a range of clinical manifestations, not explained by variation in the number of CAG repeats in the affected population. Neuroimaging studies have revealed a complex pattern of structural and functional changes affecting widespread cortical and subcortical regions far beyond the confines of the striatal degeneration that characterizes this disorder. Besides striatal dysfunction, functional imaging studies have reported a variable pattern of increased and decreased activation in cortical regions in both pre-clinical and clinically manifest HD-gene mutation carriers. Beyond regional brain activation changes, evidence from functional and diffusion-weighted MRI further suggests disrupted connectivity between corticocortical and corticostriatal areas. However, substantial inconsistencies with respect to structural and functional changes have been reported in a number of studies. Possible explanations include methodological factors and differences in study samples. There may also be biological explanations but these are poorly characterized and understood at present. Additional insights into this phenotypic variability derived from study of mouse models are presented to explore this phenomenon

    Author Correction: A consensus protocol for functional connectivity analysis in the rat brain.

    No full text

    A consensus protocol for functional connectivity analysis in the rat brain

    No full text
    Task-free functional connectivity in animal models provides an experimental framework to examine connectivity phenomena under controlled conditions and allows for comparisons with data modalities collected under invasive or terminal procedures. Currently, animal acquisitions are performed with varying protocols and analyses that hamper result comparison and integration. Here we introduce StandardRat, a consensus rat functional magnetic resonance imaging acquisition protocol tested across 20 centers. To develop this protocol with optimized acquisition and processing parameters, we initially aggregated 65 functional imaging datasets acquired from rats across 46 centers. We developed a reproducible pipeline for analyzing rat data acquired with diverse protocols and determined experimental and processing parameters associated with the robust detection of functional connectivity across centers. We show that the standardized protocol enhances biologically plausible functional connectivity patterns relative to previous acquisitions. The protocol and processing pipeline described here is openly shared with the neuroimaging community to promote interoperability and cooperation toward tackling the most important challenges in neuroscience
    corecore