5 research outputs found

    Data is often loadable in short depth: Quantum circuits from tensor networks for finance, images, fluids, and proteins

    Full text link
    Though there has been substantial progress in developing quantum algorithms to study classical datasets, the cost of simply loading classical data is an obstacle to quantum advantage. When the amplitude encoding is used, loading an arbitrary classical vector requires up to exponential circuit depths with respect to the number of qubits. Here, we address this ``input problem'' with two contributions. First, we introduce a circuit compilation method based on tensor network (TN) theory. Our method -- AMLET (Automatic Multi-layer Loader Exploiting TNs) -- proceeds via careful construction of a specific TN topology and can be tailored to arbitrary circuit depths. Second, we perform numerical experiments on real-world classical data from four distinct areas: finance, images, fluid mechanics, and proteins. To the best of our knowledge, this is the broadest numerical analysis to date of loading classical data into a quantum computer. Consistent with other recent work in this area, the required circuit depths are often several orders of magnitude lower than the exponentially-scaling general loading algorithm would require. Besides introducing a more efficient loading algorithm, this work demonstrates that many classical datasets are loadable in depths that are much shorter than previously expected, which has positive implications for speeding up classical workloads on quantum computers.Comment: 10 pages, 3 figure

    HamLib: A library of Hamiltonians for benchmarking quantum algorithms and hardware

    Full text link
    In order to characterize and benchmark computational hardware, software, and algorithms, it is essential to have many problem instances on-hand. This is no less true for quantum computation, where a large collection of real-world problem instances would allow for benchmarking studies that in turn help to improve both algorithms and hardware designs. To this end, here we present a large dataset of qubit-based quantum Hamiltonians. The dataset, called HamLib (for Hamiltonian Library), is freely available online and contains problem sizes ranging from 2 to 1000 qubits. HamLib includes problem instances of the Heisenberg model, Fermi-Hubbard model, Bose-Hubbard model, molecular electronic structure, molecular vibrational structure, MaxCut, Max-k-SAT, Max-k-Cut, QMaxCut, and the traveling salesperson problem. The goals of this effort are (a) to save researchers time by eliminating the need to prepare problem instances and map them to qubit representations, (b) to allow for more thorough tests of new algorithms and hardware, and (c) to allow for reproducibility and standardization across research studies

    Encoding trade-offs and design toolkits in quantum algorithms for discrete optimization: coloring, routing, scheduling, and other problems

    Get PDF
    Challenging combinatorial optimization problems are ubiquitous in science and engineering. Several quantum methods for optimization have recently been developed, in different settings including both exact and approximate solvers. Addressing this field of research, this manuscript has three distinct purposes. First, we present an intuitive method for synthesizing and analyzing discrete (i.e., integer-based) optimization problems, wherein the problem and corresponding algorithmic primitives are expressed using a discrete quantum intermediate representation (DQIR) that is encoding-independent. This compact representation often allows for more efficient problem compilation, automated analyses of different encoding choices, easier interpretability, more complex runtime procedures, and richer programmability, as compared to previous approaches, which we demonstrate with a number of examples. Second, we perform numerical studies comparing several qubit encodings; the results exhibit a number of preliminary trends that help guide the choice of encoding for a particular set of hardware and a particular problem and algorithm. Our study includes problems related to graph coloring, the traveling salesperson problem, factory/machine scheduling, financial portfolio rebalancing, and integer linear programming. Third, we design low-depth graph-derived partial mixers (GDPMs) up to 16-level quantum variables, demonstrating that compact (binary) encodings are more amenable to QAOA than previously understood. We expect this toolkit of programming abstractions and low-level building blocks to aid in designing quantum algorithms for discrete combinatorial problems.Comment: 46 pages; 11 figure
    corecore