17 research outputs found

    Fingerprinting of propolis by easy ambient sonic-spray ionization mass spectrometry

    Get PDF
    Chemical profiles of a representative set of 49 propolis ethanolic extracts collected worldwide (North and South America, Europe, Asia and Oceania) were obtained via easy ambient sonic-spray ionization mass spectrometry (EASI-MS). This simple and easily implemented fingerprinting technique analyses directly (without any pre-separation or sample manipulation) a tiny droplet of the ethanolic extract placed on a inert surface under ambient conditions. Data acquisition took about a minute per sample with no substantial sample carry-over. Extraction of propolis with ethanol by using an ultrasonic bath method gave EASI-MS data similar to the traditional maceration method, reducing total analysis time for the crude propolis resin from a week to just ca 1 h. Principal component analysis of the EASI-MS data is shown to group samples according to the plant sources of their resins, which characterizes their geographical origin. © 2009 Elsevier B.V. All rights reserved

    A Review Of The Plant Origins,composition And Biological Activityof Red Propolis

    Get PDF
    Propolis is a mixture of various amounts of beeswax and resins collected by beesfrom plants, particularly from buds and resinous exudates. The composition of propolisvaries according to the kind of bee, geographic and plant origin of the samples. Propolisis important for the hive defense and has been used for its medicinal properties sinceancient times. Red propolis has been found in the northeastern coast of Brazil, as well asin Cuba, Venezuela, Mexico and China. Among the most frequently cited plant sourcesare species of the Leguminosae and Clusiaceace families. The composition of redpropolis varies both qualitatively and quantitatively, confirming different plant sources.The compounds that have been found in red propolis samples are listed herein. Redpropolis has shown diverse biological activities: antimicrobial activity against differentbacteria and yeast; against Leishmania amazonensis parasites; antioxidant, cytotoxic andpotential antitumor activity; antipsoriatic, anti-inflammatory and analgesic activities;anti-obesity and hepatoprotective effects. Many new studies of red propolis are beingdeveloped due to the promising therapeutic activity; however, future studies mustdifferentiate between red propolis from diverse geographic origins and chemical profiles. © 2012 by Nova Science Publishers, Inc. All rights reserved.7589Bankova, V.S., De Castro, S.L., Marcucci, M.C., Propolis: recent advances in chemistry and plant origin (2000) Apidologie, 31, pp. 3-15Gonnet, M., Propriétés phytoinhibitrices de la colone d'abeilles (Apis Mellifera L.) (1968) Annales des abeilles, 11 (2), pp. 105-116Simone-Finstrom, M., Spivak, M., Propolis and bee health: the natural history and significance of resin use by honey bees (2010) Apidologie, 41, pp. 295-311Chauvin, R., Progrès récents dans la biologie de l'abeille (1960) Annales de l'abeilleDerevici, A., Popesco, A., Popesco, N., Recherches sur certaines propriétés biologiques de la propolis (1964) Annales des abeilles, 7 (3), pp. 191-200Delaplane, K.S., Honey Bees and Beekeeping (2010) Learning for life, Bulletin, 1045Seeley, T.D., Morse, R.A., The nest of the honey bee (Apis Mellifera L) (1976) lnsectes Sociaux, Paris., 23 (4), pp. 495-512Atkinson, E., Ellis, J., Honey bee, Apis mellifera L., confinement behavior toward beetle invaders (2001) Insectes Sociaux, 58, pp. 495-503Drezner-Levy, T., Smith, B.H., Shafir, S., The effect of foraging specialization on various learning tasks in the honey bee (Apis mellifera) (2009) Behav Ecol Sociobiol, 64, pp. 135-148Ikeno, H., Ohtani, T., Reconstruction of honeybee behavior within the observation hive (2001) Neurocomputing, (38), pp. 1317-1323Manrique, A.J., Soares, A.E.E., Inicio de um programa de seleção de abelhas africanizadas para a melhora na produção de propolis e seu efeito na produção de mel (2002) Interciencia, 27 (6), pp. 312-316Inoue, H.T., De Sousa, E., De Oliveira Orsi, R., Funari, S.C., Carelli Barreto, L., Da Silva Dib, A., Produção de própolis por diferentes métodos de coleta (2007) Asociación Latinoamericana de Producción Animal, 15 (2), pp. 65-69Castaldo, S., Capasso, F., Propolis, an old remedy used in modern medicine (2002) Fitoterapia, 73 (SUPPL. 1), pp. S1-S6Louveaux, J., Recherches sur la récolte du pollen par les abeilles (Apis Mellifera L) (1958) Annales des abeilles.Salatino, A., Teixeira É, W., Negri, G., Message, D., Origin and Chemical Variation of Brazilian propolis eCam (2005), 2 (1), pp. 33-38Barth, O.M., Da Luz, C.F.P., Palynological analysis of Brazillian red propolis samples (2009) Journal of Apicultural Research and Bee world, 48 (3), pp. 181-188Silva, B.B., Rosalen, P.L., Cury, J.A., Ikegaki, M., Souza, V.C., Esteves, A., Alencar, S.M., Chemical Composition and Botanical Origin of Red Propolis a New Type of Brazilian Propolis eCAM (2008), 5 (3), pp. 313-316Sawaya, A.C.H.F., Tomazella, D.M., Cunha, I.B.S., Bankova, V.S., Marcucci, M.C., Custodio, A.R., Eberlin, M.N., Electrospray Ionization Mass Spectrometry Fingerprinting of Propolis (2004) Analyst (London), 129, pp. 739-744Daugsch, A., Moraes, C.S., Fort, P., Park, Y.K., Brazilian Red Propolis- Chemical Composition and Botanical Origin eCAM (2008), 5 (4), pp. 435-441Piccinelli, A.L., Lotti, C., Campone, L., Cuesta-Rubio, O., Fernandez, M.C., Rastrelli, L., Cuban and Brazilian Red Propolis: Botanical Origin and Comparative Analysis by High-Performance Liquid Chromatography -Photodiode Array Detection/Electrospray Ionization Tandem Mass Spectrometry (2011) Journal of Agricultural and Food Chemistry, 59, pp. 6484-6491Trusheva, B., Popova, M., Naydenski, H., Tsvetkova, I., Rodriguez, J.G., Bankova, V., New polyisoprenylated benzophenones from Venezuelan propolis (2004) Fitoterapia, 75, pp. 683-689Lotti, C., Fernandez, M.C., Piccinelli, A.L., Cuesta-Rubio, O., Hernandez, I.M., Chemical Constituents of Red Mexican Propolis (2010) Journal of Agricultural and Food Chemistry, 58, pp. 2209-2213Izuta, H., Narahara, Y., Shimazawa, M., Mishima, S., Kondo, S.-I., Hara, H., 1, 1-Diphenyl-2-picrylhydrazyl Radical Scavenging Activity of Bee Products and Their Constituents Determined by ESR (2009) Biol. Pharm. Bull., 32 (12), pp. 1947-1951Nunes, L.C.C., Galindo, A.B., De Deus, A.D.O., Rufino, D.A., Randau, K.P., Satiro, H., Otros, Y., Variabilidade sazonal dos constituintes da própolis vermelha e bioatividade em Artermia salina (2009) Revista Brasileira de Farmacognosia, 19 (2 B), pp. 524-529Trusheva, B., Bioactive Constituents of Brazilian Red Propolis eCAM (2006), 3 (2), pp. 249-254Righi, A.A., Alves, T.R., Negri, G., Marques, L.M., Breyer, H., Salatino, A., Brazilian red propolis: unreported substances, antioxidant and antimicrobial activities (2011) J Sci Food Agric, 91, pp. 2363-2370Cabral, I.R., Oldoni, T.L.C., Prado, A., Bezerra, R.M., De Alencar, S.M., Composição fenolica, atividade antibacteriana e antioxidante da própolis vermelha brasileira (2009) Quimica Nova, 32 (6), pp. 1523-1527Awale, S., Li, F., Onozuka, H., Esumi, H., Tezukaa, Y., Kadota, S., Constituents of Brazilian red propolis and their preferential cytotoxic activity against human pancreatic PANC-1 cancer cell line in nutrient-deprived condition (2008) Bioorganic & Medicinal Chemistry, 16, pp. 181-189Alencar, S., Oldoni, T., Castro, M., Cabral, I., Costa-Neto, C., Cury, J., Rosalen, P.L., Ikegaki, M., Chemical composition and biological activity of a new type of Brazilian propolis: Red propolis (2007) Journal of Ethnopharmacology, 113, pp. 278-283Oldoni, T.L., Cabrala, I.S., D'arcea, M.A.R., Rosalen, P.L., Ikegaki, M., Nascimento, A.M., Alencar, S.M., Isolation and analysis of bioactive isoflavonoids and chalcone from a new type of Brazilian propolis (2011) Separation and Purification Technology, 77, pp. 208-213Cuesta-Rubio, O., Piccinelli, A.L., Fernandez, M.C., Hernandez, I.M., Rosado, A., Rastrelli, L., Chemical Characterization of Cuban Propolis by HPLC-PDA, HPLC-MS, and NMR: the Brown, Red, and Yellow Cuban Varieties of Propolis (2007) J. Agric. Food Chem., 55, pp. 7502-7509Fernandez, M.C., GC-MS Determination of Isoflavonoids in Seven Red Cuban Propolis samples (2008) Journal of Agricultural and Food Chemistry, 56, pp. 9927-9932Ayres, D.C., Marcucci, M.C., Giorgio, S., Effects of Brazilian propolis on Leishmania amazonensis (2007) Mem Inst Oswaldo Cruz, 102 (2), pp. 215-220Lotti, C., De Castro, G.M.M., De Sá, L.F.R., Da Silva, B.D.S., Tessis, A.C., Piccinelli, A.L., Rastrelli, L., Ferreira-Pereira, A., Inhibition of Saccharomyces cerevisiae Pdr5p by a natural compound extracted from Brazilian Red Propolis (2011) Revista Brasileira de Farmacognosia/Brazilian Journal of Pharmacognosy, 21 (5), pp. 901-907Siqueira, A., Trichophyton species susceptibility to green and red propolis from Brazil (2009) The Society for Applied Microbiology, Letters in Applied Microbiology, 48, pp. 90-96Li, F., Awale, S., Tezuka, Y., Kadota, S., Cytotoxic constituents from Brazilian red propolis and their structure-activity relationship (2008) Bioorganic & Medicinal Chemistry, 16, pp. 5434-5440Ledon, N., Casaco, A., Gonzalez, R., Merino, N., Gonzalez, A., Tolon, Z., Efectos antipsoriásico, antiinflamatorio y analgésico del propoleo rojo colectado en Cuba (1996) Revista Cubana de Farmacia, 30 (1)De Albuquerque-Junior, R.L., Effect of Bovine Type-I Collagen-Based Films Containing Red Propolis on Dermal Wound Healing in Rodent Model (2009) Int. J. Morphol., 27 (4), pp. 1105-1110Ledon, N., Casacó, A., Gonzalez, R., Bracho, J., Rosado, A., Assessment of potential dermal and ocular toxicity and allergic properties of an extract of red propolis (2002) Arch Dermatol Res, 293, pp. 594-596Iio, A., Ohguchia, K., Inoueb, H., Maruyamac, H., Araki, Y., Nozawaa, Y., Ito, M., Ethanolic extracts of Brazilian red propolis promote adipocyte differentiation through PPAR activation (2010) Phytomedicine, 17, pp. 974-979Rodriguez, S., Ancheta, O., Ramos, M.E., Remirez, D., Rojas, E., Gonzalez, R., Effects of Cuban red propolis on galactosamine-induced hepatitis in rats (1997) Pharmacological Research, 35, pp. 1-

    Use Of Electrospray Ionization Mass Spectrometry To Fingerprint Beer

    No full text
    Mass spectrometry constitutes one of the most encompassing instrumental techniques in science, widely applied in the fi elds of chemistry, biology, medical science and technology. Direct insertion electrospray ionization mass spectrometry (ESI-MS) is a fast and sensitive method which differentiates diverse types of beer, in both positive and negative ion modes, characterizing their main constituents. Although the basic ingredients of beer (water, malt, hops and yeast) have not changed much since the dark ages, variations in these ingredients and in the manufacturing process result in diverse types of beer. The spectra or fi ngerprints of each type of beer permit not only the separation of samples according to their main characteristics, but also further information through the ESI-MS/MS fragmentation of the diagnostic ions of each type, adding another dimension to the analytical results. Fast and characteristic beer fi ngerprint mass spectra were obtained by ESI-MS in both the negative and positive modes. A total of 29 samples of ale produced in Brazil and other countries were divided into three groups by visual analysis of the positive [ESI(+)-MS] and negative [ESI(-)-MS] mode fi ngerprints as well as by chemometric analysis of the data. Many of the marker ions in both modes were found to be simple sugars and oligosaccharides, although their intensities varied depending on the type of ale (pale colored, dark colored and sweetened). This shows that direct infusion ESI-MS could distinguish between samples of ale with different compositions and is promising as a fast and effi cient method of beer characterization. © 2009 Elsevier Inc.923934Alcázar, A., Pablos, F., Martín, M.J., González, A.G., (2002) Talanta, 57, pp. 45-52Annesley, T.M., (2003) Clin. Chem., 49, pp. 1041-1044Araújo, A.S., Rocha, L.L.R., Tomazela, D.M., Sawaya, A.C.H.F., Almeida, R.R., Catharino, R.R., Eberlin, M.N., (2005) Analyst, 130, pp. 884-889Berlitz, H.D., Grosch, W., Schieberle, P., (2004) F ood Chemistry, , (3rd edn). Springer-Verlag, GermanyCatharino, R.R., Sawaya, A.C.H.F., Cunha, I.B.S., Fogaça, A.O., Facco, E.M.P., Godoy, H.T., Daudt, C.E., Eberlin, M.N., (2006) J. Mass Spectrom., 41, pp. 185-190Cole, R.B., (1997) Electrospray Ionization Mass Spectrometry, , John Wiley & Sons Inc., New YorkCole, R.B., (2000) J. Mass Spectrom., 35, pp. 763-772Cooks, R.G., Zhang, D.X., Koch, K.J., Gozzo, F.C., Eberlin, M.N., (2001) Anal. Chem., 73, pp. 3646-3655Degelmann, P., Becker, M., Herderich, M., Humpf, H.U., (1999) Chromatographia, 49, pp. 543-546Eberlin, M.N., Meurer, E., Santos, L.S., Pilli, R.A., (2003) Org. Lett., 5, pp. 1391-1394Gaumet, J.J., Strouse, G., (2000) J. Am. Soc. Mass Spectrom., 11, pp. 338-344Hans, X.L., Gross, R.W., (2001) A nalytic. Biochem., 265, pp. 88-100Hardwick, W.A., (1995) Handbook of Brewing, , Marcel Dekker, New YorkHofte, A.J.P., van der Hoeven, R.A.M., Fung, S.Y., Verpoorte, R., Tjaden, U.R., Van der Greef, J., (1998) J. Am. Soc. Brew. Chem., 56, pp. 118-122Klampfl, C.W., Himmelsbach, M., Buchberger, W., Klein, H., (2002) Anal. Chim. Acta, 454, pp. 185-191Koch, K.J., Gozzo, F.C., Nanita, S.C., Takats, Z., Eberlin, M.N., Cooks, R.G., (2002) Angew. Chem. Int. Ed. Engl., 41, p. 1721Kotiaho, T., Eberlin, M.N., Vainiotalo, P., Kostiainen, R., (2000) J. Am. Soc. Mass Spectrom., 11, pp. 526-535Mauri, P., Minoggio, M., Simonetti, P., Gardana, C., Pietta, P., (2002) Rapid Commun. Mass Spectrom., 16, pp. 743-748Möller, J.K., Catharino, R.R., Eberlin, M.N., (2005) Analyst, 130, pp. 890-897de la Mora, J.F., Berkel, G.J.V., Enke, C.G., Cole, R.B., Sanchez, M.M., Fenn, J.B., (2000) J. Mass Spectrom., 35, pp. 939-952Raftery, M.J., Geczy, C.L.J., (2002) J. Am. Soc Mass Spectrom., 13, pp. 709-718Rioli, V., Gozzo, F.C., Shida, C.S., Krieger, J.E., Heimann, A.S., Linardi, A., Almeida, P.C., Ferro, E.S., (2003) J. Biol. Chem., 278, pp. 8547-8555Russel, D.H., (1994) Experimental Mass Spectrometry, , Plenum Press, New YorkSawaya, A.C.H.F., Tomazela, D.M., Cunha, I.B.S., Bankova, V.S., Marcucci, M.C., Custódio, A.R., Eberlin, M.N., (2004) Analyst, 129, pp. 739-744Schoonjans, V., Taylor, N., Hudson, B.D., Massart, D.L., (2002) J. Pharm. Biomed. Anal., 28, pp. 537-548Siuzdak, G., (2005) An Introduction to Mass Spectrometry Ionization: An Excerpt from the Expanding Role of Mass Spectrometry in Biotechnology, , 2nd edn. MCC Press, San Diego, CAWhittle, N., Eldridge, H., Bartley, J., Organ, G., (1999) J. Inst. Brew., 105, pp. 89-99Williams, J.D., Flanagan, M., Lopez, L., Fischer, S., Miller, L.A.D., (2003) J. Chromatogr. A., 1020, pp. 11-26Zhang, X.R., Minear, R.A., Guo, Y.B., Hwang, C.J., Barret, S.E., Ikeda, K., Shimizu, Y., Matsui, S., (2004) W ater Res., 38, pp. 3920-393

    Characterisation Of The Membrane Transport Of Pilocarpine In Cell Suspension Cultures Of Pilocarpus Microphyllus

    No full text
    Pilocarpine is an alkaloid obtained from the leaves of Pilocarpus genus, with important pharmaceutical applications. Previous reports have investigated the production of pilocarpine by Pilocarpus microphyllus cell cultures and tried to establish the alkaloid biosynthetic route. However, the site of pilocarpine accumulation inside of the cell and its exchange to the medium culture is still unknown. Therefore, the aim of this study was to determine the intracellular accumulation of pilocarpine and characterise its transport across membranes in cell suspension cultures of P. microphyllus. Histochemical analysis and toxicity assays indicated that pilocarpine is most likely stored in the vacuoles probably to avoid cell toxicity. Assays with exogenous pilocarpine supplementation to the culture medium showed that the alkaloid is promptly uptaken but it is rapidly metabolised. Treatment with specific ABC protein transporter inhibitors and substances that disturb the activity of secondary active transporters suppressed pilocarpine uptake and release suggesting that both proteins may participate in the traffic of pilocarpine to inside and outside of the cells. As bafilomicin A1, a specific V-type ATPase inhibitor, had little effect and NH4Cl (induces membrane proton gradient dissipation) had moderate effect, while cyclosporin A and nifedipine (ABC proteins inhibitors) strongly inhibited the transport of pilocarpine, it is believed that ABC proteins play a major role in the alkaloid transport across membranes but it is not the exclusive one. Kinetic studies supported these results.1753747Abreu, I.N., Sawaya, A.C.H.F., Eberlin, M.N., Mazzafera, P., Production of pilocarpine in callus of Jaborandi (Pilocarpus microphyllus Stapf) (2005) In Vitro Cell Dev Biol Plant, 41, pp. 806-811Abreu, I.N., Andreazza, N.L., Sawaya, A.C.H.F., Eberlin, M.N., Mazzafera, P., Cell suspension as a tool to study the biosynthesis of pilocarpine in jaborandi (2007) Plant Biol, 9, pp. 793-799Abreu, I.N., Mazzafera, P., Eberlin, M.N., Zullo, M.A.T., Sawaya, A.C.H.F., Characterization of the variation of the imidazole alkaloid profile of Pilocarpus microphyllus in different seasons and parts of the plant by electrospray ionization mass spectrometry fingerprinting and identification of novel alkaloids by tandem mass spectrometry (2007) Rapid Commun Mass Spectrom, 21, pp. 1205-1213Ambudkar, S.V., Lelong, I.H., Zhang, J., Cardarelli, C.O., Gottesman, M.M., Pastan, I., Partial purification and reconstitution of the human multi-drug resistance pump: characterization of the drug stimulatable ATP hydrolysis (1992) Proc Natl Acad Sci USA, 89, pp. 8472-8476Andreazza, N.L., Abreu, I.N., Sawaya, A.C.H.F., Eberlin, M.N., Mazzafera, P., Production of imidazole alkaloids in cell cultures of jaborandi as affected by the medium pH (2009) Biotechnol Lett, 31, pp. 607-614Avancine, G., Abreu, I.N., Saldana, M.D.A., Mohamed, R.S., Mazzafera, P., Induction of pilocarpine formation in jaborandi leaves by salicylic acid and methyljasmonate (2003) Phytochemistry, 63, pp. 171-175Badri, D.V., Loyola-Vargas, V.M., Broeckling, C.D., De-la-Pena, C., Jasinski, M., Santelia, D., Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants (2008) Plant Physiol, 146, pp. 762-771Banasiak, J., Biała, W., Staszków, A., Swarcewicz, B., Kepczyńska, E., Figlerowicz, M., A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids (2013) J Exp Bot, 64, pp. 1005-1015Blom, T.J.M., Sierra, M., van Vliet, T.B., Franke-van Dijc, M.E.I., de Koning, P., van Iren, F., Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don. and its conversion into serpentine (1991) Planta, 183, pp. 170-177Campbell, E.B., Hayward, M.L., Griffith, O.W., Analytical and preparative separation of the diastereomers of l-buthionine (SR)-sulfoximine, a potent inhibitor of glutathione biosynthesis (1991) Anal Biochem, 194, pp. 268-277Carqueijeiro, I., Noronha, H., Duarte, P., Geros, H., Sottomayor, M., Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport (2013) Plant Physiol, 162, pp. 1486-1496Davies, A.N., Broadley, K., Beighton, D., Xerostomia in patients with advanced cancer (2001) J Pain Symptom Manage, 22, pp. 820-825De Luca, V., St-Pierre, B., The cell and developmental biology of alkaloid biosynthesis (2000) Trends Plant Sci, 5, pp. 168-173Deus-Neumann, B., Zenk, M.H., Accumulation of alkaloids in plant vacuoles does not involve an ion-trap mechanism (1986) Planta, 167, pp. 44-53Drose, S., Altendorf, K., Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases (1997) J Exp Biol, 200, pp. 1-8Ducos, E., Fraysse, A.S., Boltry, M., NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum (2005) FEBS Lett, 579, pp. 6791-6795Dulby, G., Boltry, M., The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles (2009) Pflügers Archiv, 457, pp. 645-655Facchini, P.J., De Luca, V., Opium poppy and Madagascar periwinkle as model non-model systems to investigate alkaloid biosynthesis in plants (2008) Plant J, 54, pp. 763-784Filippi, S.B., Azevedo, R.A., Sodek, L., Mazzafera, P., Allantoin has a limited role as nitrogen source in cultured coffee cells (2007) J Plant Physiol, 164, pp. 544-552Furr, M., Mahberg, P.G., Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa (1981) J Nat Prod, 49, pp. 153-159Gaxiola, R.A., Palmgren, M.G., Schumacher, K., Plant proton pumps (2007) FEBS Lett, 581, pp. 2204-2214Geisler, M., Murphy, A.S., The ABC of auxin transport: the role of P-glycoproteins in plant development (2006) FEBS Lett, 580, pp. 1094-1102Geisler, M., Blakeslee, J.J., Bouchard, R., Lee, O.R., Vincenzetti, V., Bandyopadhyay, A., Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1 (2005) Plant J, 44, pp. 179-194Goodno, C.C., Inhibition of myosin ATPase by vanadate ion (1979) Proc Natl Acad Sci USA, 76, pp. 2620-2624Hagihara, M., Fujishiro, K., Takahashi, A., Naoi, M., Nagatsu, T., Cyclosporin A, an immune suppressor, enhanced neurotoxicity of N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to mice (1989) Neurochem Int, 15, pp. 249-254Humphry, M., Bednarek, P., Kemmerling, B., Koh, S., Stein, M., Göbel, U., A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity (2010) Proc Natl Acad Sci USA, 107, pp. 21896-21901Hussain, M.S., Fareed, S., Ansari, S., Rahman, M.A., Ahmad, I.Z., Saeed, M., Current approaches toward production of secondary plant metabolites (2012) J Pharm Bioallied Sci, 4, pp. 10-20Ito, H., Gray, W.M., A gain-of-function mutation in the Arabidopsis pleiotropic drug resistance transporter PDR9 confers resistance to auxinic herbicides (2006) Plant Physiol, 142, pp. 63-74Jelesko, J.G., An expanding role for purine uptake permease-like transporters in plant secondary metabolism (2012) Front Plant Sci, 3, p. 78Kaneda, M., Schuetz, M., Lin, B.S., Chanis, C., Hamberger, B., Western, T.L., ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport (2011) J Exp Bot, 62, pp. 2063-2077Kang, J., Park, J., Choi, H., Burla, B., Kretzschmar, T., Lee, Y., Plant ABC transporters (2011) Arabidopsis Book, 9, p. e0153Kass, M.A., Heuer, D.K., Higginbotham, E.J., The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma (2002) Arch Ophthalmol, 120, pp. 701-713Kim, D., Bovet, L., Maeshima, M., Martinoia, E., Lee, Y., The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance (2007) Plant J, 50, pp. 207-218Kolewe, M.E., Gaurav, V., Roberts, S.C., Pharmaceutically active natural product synthesis and supply via plant cell culture technology (2008) Mol Pharmacol, 5, pp. 243-256Kretzschmar, T., Burla, B., Lee, Y., Martinoia, E., Nagy, R., Functions of ABC transporters in plants (2011) Essays Biochem, 50, pp. 145-160Li, J., Wu, L., Wu, W., Wang, B., Wang, Z., Xin, H., A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate (2013) Int J Pharm, 455, pp. 75-84Lu, Y.P., Li, Z.S., Drozdowicz, Y.M., Hörtensteiner, S., Martinoia, E., Rea, P.A., Atmrp2, an Arabidopsis ATP-binding cassete transporter able to transport glutatione S-conjugates and chlorophyll catabolites: functional comparisons with Atmrp1 (1998) Plant Cell, 10, pp. 267-282Martinoia, E., Massonneau, A., Frangne, N., Transport process of solutes across the vacuolar membrane of higher plants (2000) Plant Cell Physiol, 41, pp. 1175-1186Mende, P., Wink, M., Uptake of the quinolizidine alkaloid lupanine by protoplasts and isolated vacuoles of suspension-cultured Lupinus polyphyllus cells. Diffusion or carrier mediated transport? (1987) J Plant Physiol, 129, pp. 229-242Minocha, S.C., PH of the medium and the growth and metabolism of cells in culture (1987) Cell and tissue culture in forestry. Vol. 1. General principles and biotechnology, pp. 125-141. , Martinus Nijhoff Publishers, Dordrecht, J.M. Bonga, D.J. Durzan (Eds.)Morth, J.P., Pedersen, B.P., Buch-Pedersen, M.J., Andersen, J.P., Vilsen, B., Palmgren, M.G., A structural overview of the plasma membrane Na+, K+-ATPase and H+-ATPase ion pumps (2010) Nat Rev Mol Cell Biol, 12, pp. 60-70Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures (1962) Physiol Plant, 15, pp. 473-497Nour-Eldin, H.H., Halkier, B.A., The emerging field of transport engineering of plant specialized metabolites (2013) Curr Opin Biotechnol, 24, pp. 263-270O'brien, T.P., Feder, N., McCully, M.E., Polychromatic staining of plant cell walls by toluidine blue O (1964) Protoplasma, 59, pp. 368-373Oksman-Caldentey, K.M., Inzé, D., Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites (2004) Trends Plant Sci, 9, pp. 433-440Omote, H., Hiasa, M., Matsumoto, T., Otsuka, M., Moriyama, Y., The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations (2006) Trends Pharmacol Sci, 27, pp. 587-593Otani, M., Shitan, N., Sakai, K., Martinoia, E., Sato, F., Yazaki, K., Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica (2005) Plant Physiol, 138, pp. 1939-1946Pimentel, M.J., Filho, M.M., Araújo, M., Gomes, D.Q., Costa, D.A.L.J., Evaluation of radioprotective effect of pilocarpine ingestion on salivary glands (2014) Anticancer Res, 34, pp. 1993-1999Pinheiro, C.U.B., Jaborandi (Pilocarpus sp., Rutaceae): a wild species and its transformation into a crop (1997) Econ Bot, 51, pp. 49-58Pomahacová, B., Dusek, J., Duskova, J., Yazaki, K., Roytrakul, S., Verpoorte, R., Improved accumulation of ajmalicine and tetrahydroalstonine in Catharanthus cells expressing an ABC transporter (2009) J Plant Physiol, 166, pp. 1405-1412Portilo, F., Regulation of plasma membrane H+-ATPase in fungi and plants (2001) Biochim Biophys Acta, 1469, pp. 31-42Rea, P.A., Plant ATP-binding cassete transporters (2007) Annu Rev Plant Biol, 58, pp. 347-375Roytrakul, S., Verpoorte, R., Role of vacuolar transporter proteins in plant secondary metabolism: Catharanthus roseus cell culture (2007) Phytochem Rev, 6, pp. 383-396Ruffoni, B., Pistelli, L., Bertoli, A., Pistelli, L., Plant cell cultures: bioreactors for industrial production (2010) Adv Exp Med Biol, 698, pp. 203-221Sakai, K., Shitan, N., Sato, F., Ueda, K., Yazaki, K., Characterization of berberine transport into Coptis japonica cells and the involvement of ABC protein (2002) J Exp Bot, 53, pp. 1879-1886Sato, H., Tagushi, G., Fukui, H., Tabata, M., Role of malic acid in solubilizing excess berberine accumulation in vacuoles of Coptis japonica (1992) Phytochemistry, 31, pp. 3451-3454Sato, F., Takeshita, N., Fijiwara, H., Katagiri, Y., Huan, L., Yamada, Y., Characterization of Coptis japonica cells with different alkaloid productivities (1994) Plant Cell Tiss Org Cult, 38, pp. 249-256Sawaya, A.C.H.F., Abreu, I.N., Andreazza, N.L., Eberlin, M.N., Mazzafera, P., HPLC-ESI-MS/MS of imidazole alkaloids in Pilocarpus microphyllus (2008) Molecules, 13, pp. 1518-1529Sawaya, A.C.H.F., Abreu, I.N., Andreazza, N.L., Eberlin, M.N., Mazzafera, P., Pilocarpine and related alkaloids in Pilocarpus (Vahl) Rutaceae (2010) Alkaloids: properties, applications, pp. 63-80. , Nova Science Publishers, Inc., New York, N.M. Cassiano (Ed.)Segawa, D., Sjöquist, P.O., Nordlander, M., Wang, Q.D., Gonon, A., Rydén, L., Cardiac inotropic vs. chronotropic selectivity of isradipine, nifedipine and clevidipine, a new ultrashort-acting dihydropyridine (1999) Eur J Pharmacol, 380, pp. 123-128Senior, A.E., Al-Shawi, M.K., Urbatsch, I.L., The catalytic cycle of P-glycoprotein (1995) FEBS Lett, 377, pp. 285-289Shitan, N., Bazin, I., Dan, K., Obata, K., Kigawa, K., Ueda, K., Involvement of CjMDR1, a plant MDR-type ABC protein, in alkaloid transport in Coptis japonica (2003) Proc Natl Acad Sci USA, 100, pp. 751-756Shitan, N., Yazaki, K., Accumulation and membrane transport of plant alkaloids (2007) Curr Pharma Biotechnol, 8, pp. 244-252Sibout, R., Höfte, H., Plant cell biology: the ABC of monolignol transport (2012) Curr Biol, 22, pp. R533-R535Sonia Malik, S., Mirjalili, M.H., Fett-Neto, A.G., Mazzafera, P., Bonfill, M., Living between two worlds: two-phase culture systems for producing plant secondary metabolites (2013) Crit Rev Biotechnol, 33, pp. 1-22Svedsen, A.B., Verpoorte, R., (1983) Chromatography of alkaloids, , Elsevier Scientific Publishing Company, New YorkTerasaka, K., Sakai, K., Sato, F., Yamamoto, H., Yazaki, K., Thalictrum minus cell cultures and ABC-like transporter (2003) Phytochemistry, 62, pp. 483-489Terasaka, K., Blakeslee, J.J., Titapiwatanakun, B., Peer, W.A., Bandyopadhyay, A., Makam, S.N., PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots (2005) Plant Cell, 17, pp. 2922-2939Tsay, Y.F., Chiu, C.C., Tsai, C.B., Ho, C.H., Hsu, P.K., Nitrate transporters and peptide transporters (2007) FEBS Lett, 581, pp. 2290-2300Urbatsch, I., Sankaran, B., Bhagat, S., Senior, A.E., Both P-glycoprotein nucleotide binding sites are catalytically active (1995) J Biol Chem, 270, pp. 26956-26961Urbatsch, I., Sankaran, B., Weber, J., Senior, A.E., P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at single catalytic site (1995) J Biol Chem, 270, pp. 19383-19390Verpoorte, R., van der Heijden, R., Schripsema, J., Hoge, J.H.C., ten Hoopen, H.J.G., Plant biotechnology for the production of alkaloids: present status and prospects (1993) J Nat Prod, 56, pp. 186-207Verpoorte, R., van der Heijden, R., ten Hoopen, H.J.G., Memelink, J., Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals (1999) Biotechnol Lett, 21, pp. 467-479Verpoorte, R., Choi, H.Y., Kim, H.K., Metabolomics: will it stay? (2009) Phytochem Anal, 21, pp. 2-3Wanke, D., Kolukisaoglu, H.U., An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions? (2010) Plant Biol, 12, pp. 15-25Wigler, P.W., Patterson, F.K., Reversal agent inhibition of the multidrug resistance protein pump in human leukemic lymphoblasts (1994) Biochim Biophys Acta, 1189, pp. 1-6Yazaki, K., ABC transporters involved in the transport of plant secondary metabolites (2006) FEBS Lett, 580, pp. 1183-1191Yazaki, K., Sugiyama, A., Morita, M., Shitan, N., Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites (2008) Phytochem Rev, 7, pp. 513-524Yazaki, K., Shitan, N., Sugiyama, A., Takanashi, K., Cell and molecular biology of ATP-binding cassette proteins in plants (2009) Int Rev Cell Mol Biol, 276, pp. 263-299Yamamoto, H., Suzuki, M., Suga, Y., Fukui, H., Tabata, M., Participation of an active transport system in berberine-secreting culture cells of Thalictrum minus (1987) Plant Cell Rep, 6, pp. 356-359Yamamoto, H., Suzuki, M., Kitamura, T., Fukui, H., Tabata, M., Energy-requiring uptake of protoberberine alkaloids by cultured cells of Thalictrum flavum (1989) Plant Cell Rep, 8, pp. 361-364Zaman, G.J., Lankelma, J., van Tellingen, O., Beijnen, J., Dekker, H., Paulusma, C., Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein (1995) Proc Natl Acad Sci USA, 92, pp. 7690-769

    Phytochemical Markers Of Different Types Of Red Propolis

    No full text
    Propolis is a resin that bees collect from different plant sources and use in the defense of the bee community. The intricate composition of propolis varies depending on plant sources from different geographic regions and many types have been reported. Red coloured propolis found in several states in Brazil and in other countries has known antimicrobial and antioxidant activity. Different analytical methods have been applied to studies regarding the chemical composition and plant origins of red propolis. In this study samples of red propolis from different regions have been characterised using direct infusion electrospray ionisation mass spectrometry (ESI(-)-MS) fingerprinting. Data from the fingerprints was extracted and analysed by multivariate analysis to group the samples according to their composition and marker compounds. Despite similar colour, the red coloured propolis samples were divided into three groups due to contrasting chemical composition, confirming the need to properly characterise the chemical composition of propolis. © 2013 Elsevier Ltd. All rights reserved.146174180Alencar, S.M., Oldoni, T.L.C., Castro, M.L., Cabral, I.S.R., Costa-Neto, C.M., Cury, J.A., Rosalen, P.L., Ikegaki, M., Chemical composition and biological activity of a new type of Brazilian propolis: Red propolis (2007) Journal of Ethnopharmacology, 113 (2), pp. 278-283. , DOI 10.1016/j.jep.2007.06.005, PII S037887410700284XAwale, S., Li, F., Onozuka, H., Esumi, H., Tezuka, Y., Kadota, S., Constituents of Brazilian red propolis and their preferential cytotoxic activity against human pancreatic PANC-1 cancer cell line in nutrient-deprived condition (2008) Bioorganic & Medicinal Chemistry, 16 (1), pp. 181-189Bankova, V., Boudourova-Krasteva, G., Sforcin, J.M., Frete, X., Kujumgiev, A., Maimoni-Rodella, R., Popov, S., Phytochemical evidence for the plant origin of Brazilian propolis from Sao Paulo state (1999) Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 54 (5-6), pp. 401-405Bankova, V.S., De Castro, S.L., Marcucci, M.C., Propolis: Recent advances in chemistry and plant origin (2000) Apidologie, 31 (1), pp. 3-15Banskota, A.H., Tezuka, Y., Prasain, J.K., Matsushige, K., Saiki, I., Kadota, S., Chemical constituents of Brazilian propolis and their cytotoxic activities (1998) Journal of Natural Products, 61 (7), pp. 896-900. , DOI 10.1021/np980028cBarth, M.O., Pinto Da Luz, C.F., Palynological analysis of Brazilian red propolis samples (2009) Journal of Apicultural Research and Bee World, 48 (3), pp. 181-188Cabral, I.S.R., Oldoni, T.L.C., Prado, A., Bezerra, R.M.N., Alencar, S.M., Ikegaki, M., Composição fenólica, atividade antibacteriana e antioxidante da própolis vermelha brasileira (2009) Química Nova, 32, pp. 1523-1527Cuesta-Rubio, O., Frontana-Uribe, B.A., Ramirez-Apan, T., Cardenas, J., Polyisoprenylated benzophenones in Cuban propolisbiological activity of nemorosone (2002) Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 57 (3-4), pp. 372-378Cuesta-Rubio, O., Piccinelli, A.L., Fernandez, M.C., Hernandez, I.M., Rosado, A., Rastrelli, L., Chemical characterization of Cuban propolis by HPLC-PDA, HPLC-MS, and NMR: The brown, red, and yellow Cuban varieties of propolis (2007) Journal of Agricultural and Food Chemistry, 55 (18), pp. 7502-7509. , DOI 10.1021/jf071296wDaugsch, A., Moraes, C.S., Fort, P., Park, Y.K., Brazilian red propolis-chemical composition and botanical origin (2008) Evid Based Complement Alternat Med, 5 (4), pp. 435-441Fernandez, M.C., Cuesta-Rubio, O., Rosado Perez, A., De Oca, M., Porto, R., Marquez Hernandez, I., GC-MS determination of isoflavonoids in seven red Cuban propolis samples (2008) Journal of Agriculture and Food Chemistry, 56 (21), pp. 9927-9932Gonnet, M., Propriétés phytoinhibitrices de la colone d'abeilles (Apis Mellifera L.) (1968) Annales des Abeilles, 11 (2), pp. 105-116Ishida, V.F.D.C., Negri, G., Salatino, A., Bandeira, M.F.C.L., A new type of Brazilian propolis: Prenylated benzophenones in propolis from Amazon and effects against cariogenic bacteria (2011) Food Chemistry, 125 (3), pp. 966-972Izuta, H., Narahara, Y., Shimazawa, M., Mishima, S., Kondo, S., Hara, H., 1,1-Diphenyl-2-picrylhydrazyl radical scavenging activity of bee products and their constituents determined by ESR (2009) Biological & Pharmaceutical Bulletin, 32 (12), pp. 1947-1951Ledón, N., Casacó, A., González, R., Merino, N., González, A., Tolón, Z., Efectos antipsoriásico, antiinflamatorio y analgésico del propoleo rojo colectado en Cuba (1996) Revista Cubana de Farmacia, 30Li, F., Awale, S., Tezuka, Y., Kadota, S., Cytotoxic constituents from Brazilian red propolis and their structure-activity relationship (2008) Bioorganic and Medicinal Chemistry, 16 (10), pp. 5434-5440. , DOI 10.1016/j.bmc.2008.04.016, PII S0968089608003295López, B.G.-C., Sawaya, A.C.H.F., A review of the plant origins, composition and biological activity of red propolis (1974) Natural Products: Structure, Bioactivity and Applications, pp. 83-96. , R.E. Goncalves, M. Cunha Pinto, Nova Science PublishersLotti, C., Campo Fernandez, M., Piccinelli, A.L., Cuesta-Rubio, O., Marquez Hernandez, I., Rastrelli, L., Chemical constituents of red Mexican propolis (2010) Journal of Agriculture and Food Chemistry, 58 (4), pp. 2209-2213Marcucci, M.C., Sawaya, A.C.H.F., Custódio, A.R., Paulino, N., Eberlin, M.N., HPLC and ESI-MS typification: New approaches for natural therapy with Brazilian propolis (2008) Scientific Evidence of the Use of Propolis in Ethnomedicine, pp. 33-54. , N. Oršolić, I. Bašić, Transworld Research Network Kerala, IndiaMorsy, A., Abdalla, A., Soltan, Y., Sallam, S.A., El-Azrak, K.-D., Louvandini, H., Effect of Brazilian red propolis administration on hematological, biochemical variables and parasitic response of Santa Inês ewes during and after flushing period (2013) Tropical Animal Health and Production, pp. 1-10Nunes, L.C.C., Galindo, A.B., Deus, A.D.S.O.D., Rufino, D.A., Randau, K.P., Xavier, H.S., Variabilidade sazonal dos constituintes da própolis vermelha e bioatividade em Artermia salina (2009) Revista Brasileira de Farmacognosia, 19, pp. 524-529Oldoni, T.L.C., Cabral, I.S.R., D'Arce, M.A.B.R., Rosalen, P.L., Ikegaki, M., Nascimento, A.M., Isolation and analysis of bioactive isoflavonoids and chalcone from a new type of Brazilian propolis (2011) Separation and Purification Technology, 77 (2), pp. 208-213Piccinelli, A.L., Lotti, C., Campone, L., Cuesta-Rubio, O., Campo Fernandez, M., Rastrelli, L., Cuban and Brazilian red propolis: Botanical origin and comparative analysis by high-performance liquid chromatography-photodiode array detection/electrospray ionization tandem mass spectrometry (2011) Journal of Agriculture and Food Chemistry, 59 (12), pp. 6484-6491Righi, A.A., Alves, T.R., Negri, G., Marques, L.M., Breyer, H., Salatino, A., Brazilian red propolis: Unreported substances, antioxidant and antimicrobial activities (2011) Journal of the Science of Food and Agriculture, 91 (13), pp. 2363-2370Rodriguez, S., Ancheta, O., Ramos, M.E., Remirez, D., Rojas, E., Gonzalez, R., Effects of cuban red propolis on galactosamine-induced hepatitis in rats (1997) Pharmacological Research, 35 (1), pp. 1-4. , DOI 10.1006/phrs.1996.9998Sawaya, A.C.H.F., Cunha, I.B.D.S., Marcucci, M.C., Aidar, D.S., Silva, E.C.A., Carvalho, C.A.L., Electrospray ionization mass spectrometry fingerprinting of propolis of native Brazilian stingless bees (2007) Apidologie, 38 (1), pp. 93-103Sawaya, A.C.H.F., Cunha, I.B.S., Marcucci, M.C., De Oliveira Rodrigues, R.F., Eberlin, M.N., Brazilian propolis of Tetragonisca angustula and Apis mellifera (2006) Apidologie, 37 (3), pp. 398-407. , http://www.edpsciences.org/articles/apido/pdf/2006/03/M6020.pdf?access=ok, DOI 10.1051/apido:2006011Sawaya, A.C.H.F., Tomazela, D.M., Cunha, I.B.S., Bankova, V.S., Marcucci, M.C., Custodio, A.R., Eberlin, M.N., Electrospray ionization mass spectrometry fingerprinting of propolis (2004) Analyst, 129 (8), pp. 739-744. , DOI 10.1039/b403873hSebrae, Origem garantida (2012) Empreender, Globo Rural, 323, pp. 1-3Silva, B.B., Rosalen, P.L., Cury, J.A., Ikegaki, M., Souza, V.C., Esteves, A., Chemical composition and botanical origin of red propolis, a new type of Brazilian propolis (2008) Evid Based Complement Alternat Med, 5 (3), pp. 313-316Simone-Finstrom, M., Spivak, M., Propolis and bee health: The natural history and significance of resin use by honey bees (2010) Apidologie, 41 (3), pp. 295-311Tomás-Barberán, F.A., García-Viguera, C., Vit-Olivier, P., Ferreres, F., Tomás-Lorente, F., Phytochemical evidence for the botanical origin of tropical propolis from Venezuela (1993) Phytochemistry, 34 (1), pp. 191-196Tosi, E.A., Re, E., Ortega, M.E., Cazzoli, A.F., Food preservative based on propolis: Bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli (2007) Food Chemistry, 104 (3), pp. 1025-1029. , DOI 10.1016/j.foodchem.2007.01.011, PII S0308814607000647Trusheva, B., Popova, M., Bankova, V., Simova, S., Marcucci, M.C., Miorin, P.L., Bioactive constituents of Brazilian red propolis (2006) Evid Based Complement Alternat Med, 3 (2), pp. 249-254Trusheva, B., Popova, M., Naydenski, H., Tsvetkova, I., Rodriguez, J.G., Bankova, V., New polyisoprenylated benzophenones from Venezuelan propolis (2004) Fitoterapia, 75 (7-8), pp. 683-689. , DOI 10.1016/j.fitote.2004.08.001, PII S0367326X04001832Zulueta, A., Esteve, M.J., Frígola, A., ORAC and TEAC assays comparison to measure the antioxidant capacity of food products (2009) Food Chemistry, 114 (1), pp. 310-31

    Pilocarpine And Related Alkaloids In Pilocarpus Vahl (rutaceae)

    Get PDF
    Pilocarpine is mainly known as a drug for the treatment of glaucoma and it is also used as a stimulant of sweat and lachrymal glands. Species of the genus Pilocarpus are collectively named jaborandi in Brazil and their leaves are the only known source of this imidazole alkaloid. Pilocarpine is mainly obtained from two species, Pilocarpus microphyllus and Pilocarpus jaborandi and, despite the economical and pharmacological importance of this alkaloid, very little is known about pilocarpine, from basic information on the contents in different jaborandi species and plant tissues to the biosynthetic route and the metabolic control. This review will focus briefly on the genus jaborandi, then on what is known about pilocarpine biosynthesis followed by possible biotechnological applications aiming to produce the alkaloid in vitro. Finally, the alkaloids found in this genus, their plant sources and pharmacological applications will be reviewed. © 2010 Nova Science Publishers, Inc.6380Abreu, I.N., Andreazza, N.L., Sawaya, A.C.H.F., Eberlin, M.N., Mazzafera, P., Cell suspension as a tool to study the biosynthesis of pilocarpine in Jaborandi (2007) Plant Biology, 9, pp. 793-799Abreu, I.N., Mazzafera, P., Eberlin, M.N., Zullo, M.A.T., Sawaya, A.C.H.F., Characterization of the variation of the imidazole alkaloid profile of Pilocarpus microphyllus in different seasons and parts of the plant by electrospray ionization mass spectrometry fingerprinting and identification of novel alkaloids by tandem mass spectrometry (2007) Rapid Commun. Mass Spectr, 21, pp. 1205-1213Abreu, I.N., Sawaya, A.C.H.F., Eberlin, M.N., Mazzafera, P., Production of pilocarpine in callus of Jaborandi (Pilocarpus microphyllus Stapf) (2005) Vitro Cellular Developmental Biology - PLANT, 41, pp. 806-811Andrade, P., Willoughby, R., Pomponi, S.A., Kerr, R.G., Biosynthetic studies of the alkaloid, stevensine, in a cell culture of the marine sponge Teichaxinella morchella (1999) Tetrahedron Letters, 40, pp. 4775-4778Andrade-Neto, M., Mendes, P.H., Silveira, E.R., An imidazole alkaloid and other constituents from Pilocarpus trachyllophus (1996) Phytochemistry, 42, pp. 885-887Andreazza, N.L., (2009) Transporte de pilocarpina em suspensões celulares de Pilocarpus microphyllus, , Universidade estadual de CampinasAndreazza, N.L., Abreu, I.N., Sawaya, A.C.H.F., Eberlin, M.N., Mazzafera, P., Production of imidazole alkaloids in cell cultures of jaborandi as affected by the medium pH (2008) Biotechnology Letters, 31, pp. 607-614Avancini, G., Abreu, I.N., Saldaña, M.D.A., Mohamed, R.S., Mazzafera, P., Induction of pilocarpine formation in jaborandi leaves by salicylic acid and methyljasmonate (2003) Phytochemistry, 63, pp. 171-175Baricevic, D., Umek, A., Kreft, S., Maticic, B., Zupancic, A., Effect of water stress and nitrogen fertilization on the content of hyoscyamine and scopolamine in the roots of deadly nightshade (Atropa belladonna) (1999) Environmental and Experimental Botany, 42, pp. 17-24Braun, M., Buhne, C., Cougali, D., Schaper, K., Frank, W., Convergent diasteroselective synthesis of isopilocarpine by one-pot Michael-addition-alkylation reaction (2004) Synthesis, 17, pp. 2905-2909Cordell, G.A., (1981) Introduction to alkaloids: a biogenetic approach, , New York, John Wiley & SonsDavies, S.G., Roberts, P.M., Stephenson, P.T., Thomson, J.E., Syntheses of the racemic jaborandi alkaloids pilocarpine, isopilocarpine and pilosinine (2009) Tetrahedron Letters, 50 (3127), pp. 3509-3512Davies, S.G., Robets, P.M., Stephenson, P.T., Storr, H.R., Thomson, J.E., A practical and scalable total synthesis of the jaborandi alkaloid (+)-pilocarpine (2009) Tetrahedon, 65, pp. 8283-8296de Luca, L., Naturally occurring and synthetic imidazoles. Their chemistry and their biological activities (2006) Current Medical Chemistry, 13, pp. 1-23Dewick, P.M., (1997) Medicinal natural products: a biosynthetic approach, , New York, John Wiley & SonsGerard, A.W., Alkaloid and active principles of jaborandi (1875) Pharmaceutical Journal, 5, p. 865Godoy-Hernandez, G.C., Vazquez-Flota, F.A., Loyola-Vargas, V.M., The exposure to trans-cinnamic acid of osmotically stressed Catharanthus roseus cells cultured in a 14-L bioreactor increases alkaloid accumulation (2000) Biotechnology Letters, 22, pp. 921-925Goodman, L.S., Gilman, A., (2001) The pharmacological basis of therapeutics, , 10th edition, New York, McGraw Hill Companies IncHardy, M.E., Sur le jaborandi (Pilocarpus pinnatus) (1875) Bulletin Societe Chimi Paris, 24, pp. 497-500Hemscheidt, T., Spenser, I.D., Biosynthesis of anosmine, an imidazólico alkaloid of the orchid Dendrobium parishii (1991) Journal of Chemical Society - Chemical Communications, 7, pp. 494-497Hill, R.K., Barcza, S., Sterochemistry of the Jaborandi alkaloids (1966) Tetrahedon, 22, pp. 2889-2893Holmstead, B., Wassen, S.H., Schultes, R.E., Jaborandi: an interdisciplinary appraisal (1979) Journal of Ethnopharmacology, 1, pp. 3-21(1992) Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis., pp. 870-872. , IBAMA, Portaria n° 06N, Diário Oficial, Brasília, janeiro 15, 1992Joseph, C.J., Revisão sistemática do gênero Pilocarpus (ssp. brasileiras) (1967) Mecânica Popular, pp. 1-9. , OctoberKaastra, R.C., (1982) Pilocarpinae. Flora Neotropica. Monograph number 33, , New York Botanical Garden, New YorkLi, Z.H., Liu, Z.J., Effect of NaCl on growth, morphology, and camptothecin accumulation in Camptotheca acuminata seedlings (2003) Canadian Journal of Plant Science, 83, pp. 931-938Link, H., Bernauer, K., Über die Synthese der Pilocarpus-alkloide isopilosin und pilocarpin, sowie die absolute konfiguration dês (+)- Isopilosins (1972) Helvetica Chimica Acta, 55, pp. 1053-1062Link, H., Bernauer, K., Oberhans, W.E., Configuration of Pilocarpus alkaloids (1974) Helvetica Chimica Acta, 57, pp. 2199-2200Lucio, E.M.R., Rosalen, P.L., Sharapin, N., Souza-Brito, A.R.M., Avaliação toxicológica e screening hipocrático de epiisopilosine, alcalóide secundário de Pilocarpus microphyllus Staph (2000) Revista Brasileira de Farmacognosia, 9, pp. 23-35Lucio, E.M.R., Sharapin, N., França, H.S., Estudo de alcalóides de Pilocarpus pennatifolius Lemaire (2002) Revista Brasileira de Farmacognosia, 12, pp. 130-131Merbel, N.C., Tinke, A.P., Oosterhuris, B., Jonkman, J.H.G., Bohle, J.F., Determination of pilocarpine, isopilocarpine, pilocarpic acid and isopilocarpic aid in human plasma and urine by high performance liquid chromatography and tandem spectrometric detection (1998) Journal of Chromatography B, 708, pp. 103-112Oksman-Caldentey, K.M., Inze, D., Plant cell factories in the post-genomic era: New ways to produce designer secondary metabolites (2004) Trends in Plant Science, 9, pp. 433-440Oliveira, P.D., (2007) Filogenética de Pilocarpinae (Rutaceae), , PhD Thesis, Universidade de São PauloPark, R., On the use of Jaborandi or pilocarpine in the collapse of scarlatina maligna (1883) Lancet, 121, p. 1041Payo Hill, A., Dominicis, M.E., Oquendo, M., Sarduy, R., Obtención de pilocarpina a partir de Pilocarpus racemosus Vahl (1995) Revista Cubana de Farmacia, 29, pp. 123-125Pinheiro, C.U.B., Jaborandi (Pilocarpus sp., Tutaceae): a wild species and its rapid transformation into a crop (1997) Econ. Bot, 51, pp. 49-58Pinheiro, C.U.B., Extrativismo, cultivo e privatização do jaborandi (Pilocarpus microphyllus Stapf ex Holm.Rutaceae) no Maranhão (2002) Acta bot. bras, 16, pp. 141-150Rastogi, N., Abaul, J., Goh, K.S., Devallois, A., Philogene, E., Bourgeois, P., Antimycobacterial activity of chemically defined natural substances form the Caribbean flora in Guadeloupe (1998) FEMS Immunology and Medical Microbiology, 20, pp. 267-273Sandhu, S.S., Abreu, I.N., Colombo, C.A., Mazzafera, P., Pilocarpine content and molecular diversity in Jaborandi (2005) Scientia Agricola, 63, pp. 478-482Santos, A.P., Moreno, P.R.H., Pilocarpus spp.: A survey of its chemical constituents and Biological activities (2004) Brazilian Journal of Pharmaceutical Sciences, 40, pp. 115-137Sawaya, A.C.H.F., Abreu, I.N., Andreazza, N.L., Eberlin, M.N., Mazzafera, P., HPLC-ESI-MS/MS of imidazole alkaloids in Pilocarpus microphyllus (2008) Molecules, 13, pp. 1518-1529Sawaya, A.C.H.F., Gontijo Vaz, B., Eberlin, M.N., Mazzafera, P., (2010) Comparative study of imidazole alkaloids in seven species of Pilocarpus, , SubmmitedSkorupa, L.A., (1996) Revisão Taxonômica de Pilocarpus Vahl (Rutaceae), , PhD Thesis, Universidade de São PAuloSousa, M.P., Matos, M.E.O., Matos, F.J.A., Machado, M.I.L., Craveiro, A.A., (1991) Constituintes químicos ativos de plantas medicinais brasileiras, , Fortaleza, Brazil, Editora da Universidade Federal do CearáSouza, R.C., Fernandes, J.B., Vieira, P.C., Silva, M.F.G.F., Godoy, M.F.P., Pagnocca, F.C., Bueno, O.C., Pirani, J.R., New imidazole alkaloid and other constituents from Pilocarpus grandiflorus and their antifungal activity (2005) Zeitschrift für Naturforschung B, 60, pp. 787-791Stafford, A., Morris, P., Fowler, M.W., Plant cell biotechnology: a perpective (1986) Enzyme Microbial Technology, 8, pp. 578-587Superintendência do Desenvolvimento do Maranhão (1970) Novo Zoneamento do Estado do Maranhão, , SUDEMA, São Luis, MATedeschi, E., Kamionsky, J., Zeider, D., Fackler, S., Isolation, characterization, and synthesis of trans-pilosine stereoisomers occurring in nature Circular dicrooism and mass spectral studies (1974) Journal of Organic Chemistry, 39, pp. 1864-1879Uva, L., Librizzi, L., Marchi, N., Noe, F., Bongiovammi, R., Vezzani, A., Janigro, D., de Curtis, M., Acute induction of epilelptiform discharges by pilocarpine in the in vitro isolated guinea-pig brain requires enhancement of blood-brain barrier permeability (2008) Neuroscience, 151, pp. 303-312Valdez, I.H., Wolff, A., Atkinson, J.C., Macynsky, A.A., Foz, P.C., Use of pilocarpine during head and neck radiation therapy to reduce xerostomia and salivary dysfunction (1993) Cancer, 71, pp. 1848-1851Van der Fits, L., Zhang, H., Menke, F.L.H., Deneka, M., Memelink, J., A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway (2000) Plant Molecular Biology, 44, pp. 675-685Verpoorte, R., Memelink, J., Engeneering secondary metabolite in plant (2002) Current Opinion in Biotechnology, 13, pp. 181-187Verpoorte, R., v.d.H., R., Schripsema, J., Hoge, J.H.C., Ten Hoopen, H.J.G., Plant cell biotechnology for the production of alkaloids: Present status and prospects (1993) Journal of Natural Products, 56, pp. 186-207Verpoorte, R., vanderHeijden, R., tenHoopen, H.J.G., Memelink, J., Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals (1999) Biotechnology Letters, 21, pp. 467-479Vieira, R.F., Conservation of medicinal and aromatic plants in Brazil (1999) Perspectives on new crops and new uses, pp. 152-159. , Janick, J., Alexandria, ASHS PressVoigtlander, H.W., Balsam, G., Engelhardt, M., Epiisopiloturin, ein Neues Pilocapus-Alkaloid (1978) Archiv der Pharmazie, 311, pp. 927-93

    Convergence Of A Specialized Root Trait In Plants From Nutrient-impoverished Soils: Phosphorus-acquisition Strategy In A Nonmycorrhizal Cactus

    No full text
    In old, phosphorus (P)-impoverished habitats, root specializations such as cluster roots efficiently mobilize and acquire P by releasing large amounts of carboxylates in the rhizosphere. These specialized roots are rarely mycorrhizal. We investigated whether Discocactus placentiformis (Cactaceae), a common species in nutrient-poor campos rupestres over white sands, operates in the same way as other root specializations. Discocactus placentiformis showed no mycorrhizal colonization, but exhibited a sand-binding root specialization with rhizosheath formation. We first provide circumstantial evidence for carboxylate exudation in field material, based on its very high shoot manganese (Mn) concentrations, and then firm evidence, based on exudate analysis. We identified predominantly oxalic acid, but also malic, citric, lactic, succinic, fumaric, and malonic acids. When grown in nutrient solution with P concentrations ranging from 0 to 100 μM, we observed an increase in total carboxylate exudation with decreasing P supply, showing that P deficiency stimulated carboxylate release. Additionally, we tested P solubilization by citric, malic and oxalic acids, and found that they solubilized P from the strongly P-sorbing soil in its native habitat, when the acids were added in combination and in relatively low concentrations. We conclude that the sand-binding root specialization in this nonmycorrhizal cactus functions similar to that of cluster roots, which efficiently enhance P acquisition in other habitats with very low P availability.1762345355Afif, E., Barrón, V., Torrent, J., Organic matter delays but does not prevent phosphate sorption by cerrado soils from Brazil (1995) Soil Sci, 159, pp. 207-211. , COI: 1:CAS:528:DyaK2MXkslWltbc%3DAlves, R.J.V., Kolbek, J., Plant species endemism in savanna vegetation on table mountains (Campo Rupestre) in Brazil (1994) Vegetation, 113, pp. 125-139Barrow, N.J., Towards a single-point method for measuring phosphate sorption by soils (2000) Aust J Soil Res, 38, pp. 1099-1113. , COI: 1:CAS:528:DC%2BD3cXot1Wjs7g%3DBates, T.R., Lynch, J.P., Root hairs confer a competitive advantage under low phosphorus availability (2001) Plant Soil, 236, pp. 243-250. , COI: 1:CAS:528:DC%2BD3MXptlKhu7w%3DBates, D., Maechler, M., Bolker, B., (2012) Lme4: linear mixed-effects models using S4 classes, , R Package version 0.99875-6Bolan, N.S., Naidu, R., Mahimairaja, S., Baskaran, S., Influence of low-molecular-weight organic acids on the solubilization of phosphates (1994) Biol Fertil Soils, 18, pp. 311-319. , COI: 1:CAS:528:DyaK2MXjsVCqtbk%3DBrazilian woodland savannah and seasonally dry forest species Persp Plant Ecol Evol Syst, 16 (2), pp. 64-74Cândido, H.G., (2012) Estratégias de aquisição de nutrientes e estequiometria ecológica em comunidades de campos rupestres, , Brasil. Master’s Dissertation, Universidade Estadual de Campinas, Campinas, BrazilChen, S.L., Yang, L.T., Lin, Z.H., Tang, N., Roles of organic acid metabolism in plant tolerance to phosphorus-deficiency (2013) Progress in Botany 74, pp. 213-237. , Lüttge U, Beyschlag W, Rancis D, Cushman J, (eds), Springer, New YorkColwell, J.D., The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis (1963) Aust J Exp Agric Anim Husbandry, 3, pp. 190-197. , COI: 1:CAS:528:DyaF2cXnvVOhsQ%3D%3DBenites, M.V., Caiafa, A.N., de Mendonça, E.S., Schaefer, C.E., Ker, J.C., Solos e vegetação nos complexos rupestres de altitude da Mantiqueira e do Espinhaço (2003) Flor e Amb, 10, pp. 76-85De Campos, M.C.R., Phosphorus-acquisition and phosphorus-conservation mechanisms of plants native to south-western Australia or to Brazilian rupestrian fields (2012) PhD thesis, , University of Western Australia, PerthDinkelaker, B., Hengeler, C., Marschner, H., Distribution and function of proteoid roots and other root clusters (1995) Bot Acta, 108, pp. 183-200Dong, D., Peng, X., Yan, X., Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes (2004) Physiol Plant, 122, pp. 190-199. , COI: 1:CAS:528:DC%2BD2cXovVyns7g%3DFox, T.R., Comerford, N.B., Influence of oxalate loading on phosphorus and aluminum solubility in spodosols (1992) Soil Sci Soc Am J, 56, pp. 290-294. , COI: 1:CAS:528:DyaK38XitlCmsbg%3DGardner, W.K., Boundy, K.A., The acquisition of phosphorus by Lupinus albus L. IV. The effect of interplanting wheat and white lupin on the growth and mineral composition of the two species (1983) Plant Soil, 70, pp. 391-402. , COI: 1:CAS:528:DyaL3sXktVCltLg%3DGardner, W.K., Barber, D.A., Parbery, D.G., The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced (1983) Plant Soil, 70, pp. 107-124. , COI: 1:CAS:528:DyaL3sXhsF2ls7k%3DGiovanetti, M., Mosse, B., An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots (1980) New Phytol, 84, pp. 489-500Graetz, D.A., Nair, V.D., Phosphorus sorption isotherm determination (2009) Methods of phosphorus analysis for soils, sediments, residuals, and waters, pp. 33-37. , Kovar JL, Pierzynski GM, (eds), Virginia Tech University, VirginiaGrierson, P.F., Attiwill, P.M., Chemical characteristics of the proteoid root mat of Banksia integrifolia L (1989) Aust J Bot, 37, pp. 137-143. , COI: 1:CAS:528:DyaK3cXhvFShtg%3D%3DHayes, P., Turner, B.L., Lambers, H., Laliberté, E., Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence (2014) J Ecol, 102, pp. 396-410. , COI: 1:CAS:528:DC%2BC2cXjt1Shsro%3DHinsinger, P., Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review (2001) Plant Soil, 237, pp. 173-195. , COI: 1:CAS:528:DC%2BD38XovVWlsQ%3D%3DHoffland, E., van den Boogaard, R., Nelemans, J., Findenegg, G., Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants (1992) New Phytol, 122, pp. 675-680. , COI: 1:CAS:528:DyaK3sXhs1ygs70%3DHoffland, E., Wei, C., Wissuwa, M., Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency (2006) Plant Soil, 283, pp. 155-162. , COI: 1:CAS:528:DC%2BD28XpvVGgtro%3DHopper, S.D., OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes (2009) Plant Soil, 322, pp. 49-86. , COI: 1:CAS:528:DC%2BD1MXhtVWisrnNJauregui, M.A., Reisenauer, H.M., Dissolution of oxides of manganese and iron by root exudate components (1982) Soil Sci Soc Am J, 46, pp. 314-317. , COI: 1:CAS:528:DyaL38Xkt1aksr4%3DJohansen, D.A., (1940) Plant microtechnique, , McGraw-Hill, New YorkJohnson, S.E., Loeppert, R.H., Role of organic acids in phosphate mobilization from iron oxide (2006) Soil Sci Soc Am J, 70, pp. 222-234. , COI: 1:CAS:528:DC%2BD28Xht1Wnsrw%3DJones, D.L., Organic acids in the rhizosphere – a critical review (1998) Plant Soil, 205, pp. 25-44. , COI: 1:CAS:528:DyaK1MXhtlGjs78%3DKeerthisinghe, G., Hocking, P.J., Ryan, P.R., Delhaize, E., Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.) (1998) Plant Cell Environ, 21, pp. 467-478. , COI: 1:CAS:528:DyaK1cXlt1elsrg%3DKendall, M.G., (1970) Rank correlation methods, , Griffin, LondonKoske, R.E., Gemma, J.N., A modified procedure for staining roots to detect VA mycorrhizas (1989) Mycol Res, 92, pp. 486-488Laliberté, E., Turner, B.L., Costes, T., Pearse, S.J., Wyrwoll, K., Zemunik, G., Lambers, H., Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot (2012) J Ecol, 100, pp. 631-642Lambers, H., Shane, M.W., Cramer, M.D., Pearse, S.J., Veneklaas, E.J., Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits (2006) Ann Bot, 98, pp. 693-713. , PID: 16769731Lambers, H., Chapin, F.S., Pons, T.L., (2008) Plant physiological ecology, , Springer, New YorkLambers, H., Raven, J.A., Shaver, G.R., Smith, S.E., Plant nutrient-acquisition strategies change with soil age (2008) Trends Ecol Evol, 23, pp. 95-103. , PID: 18191280Lambers, H., Brundrett, M.C., Raven, J.A., Hopper, S.D., Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies (2010) Plant Soil, 334, pp. 11-31. , COI: 1:CAS:528:DC%2BC3cXhtVaqtbnJLamont, B., The biology of dauciform roots in the sedge Cyathochaete avenacea (1974) New Phytol, 73, pp. 985-996Lamont, B., Mechanisms for enhancing nutrient uptake in plants, with particular reference to mediterranean South Africa and Western Australia (1982) Bot Rev, 48, pp. 597-689. , COI: 1:CAS:528:DyaL3sXntVymtA%3D%3DLenth, R.V., (2014) Lsmeans: least-Squares Means, , R Package version 2:05Lynch, J.P., Brown, K.M., Topsoil foraging—an architectural adaptation of plants to low phosphorus availability (2001) Plant Soil, 225, pp. 225-237Ma, J.F., Hiradate, S., Matsumoto, H., High aluminum resistance in buckwheat. II Oxalic acid detoxifies aluminum internally (1998) Plant Physiol, 117, pp. 753-759. , COI: 1:CAS:528:DyaK1cXkvVylsbs%3DMachado, M., Braun, P., Taylor, N.P., Zappi, D., (2013) Discocactus placentiformis, , IUCN 2013 IUCN Red List Threatened Species Version 2013.2Martin, L.A., James, G., Unusual habitats, unusual plants (2009) Cactus Succul J, 81, pp. 106-112McCully, M.E., Roots in soil: unearthing the complexities of roots and their rhizospheres (1999) Annu Rev Plant Physiol Plant Mol Biol, 50, pp. 695-718. , PID: 15012224, COI: 1:CAS:528:DyaK1MXkt1yktrg%3DMiller, R.M., The nonmycorrhizal root: a strategy for survival in nutrient-impoverished soils (2005) New Phytol, 165, pp. 655-658. , PID: 15720676Motomizu, S., Wakimoto, T., Tôei, K., Spectrophotometric determination of phosphate in river waters with molybdate and malachite green (1983) Analyst, 108, pp. 361-367. , COI: 1:CAS:528:DyaL3sXitVCjtrw%3DMuler, A.L., Oliveira, R.S., Lambers, H., Veneklaas, E.J., Does cluster-root activity benefit nutrient uptake and growth of co-existing species? (2014) Oecologia, 174, pp. 23-31. , PID: 23934064Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., Biodiversity hotspots for conservation priorities (2000) Nature, 403, pp. 853-858. , PID: 10706275, COI: 1:CAS:528:DC%2BD3cXhs1Olsr4%3DNagarajah, S., Posner, A.M., Quirk, J.P., Competitive adsorption of phosphate with polygalacturonate and other organic anions on kaolinite and oxide surfaces (1970) Nature, 228, pp. 83-85. , PID: 16058419, COI: 1:CAS:528:DyaE3MXht1agtw%3D%3DNambiar, E.K.S., Uptake of Zn65 from dry soil by plants (1976) Plant Soil, 44, pp. 267-271. , COI: 1:CAS:528:DyaE28XntlSguw%3D%3DNeumann, G., Martinoia, E., Cluster roots: an underground adaptation for survival in extreme environments (2002) Trends Plant Sci, 7, pp. 162-167. , PID: 11950612, COI: 1:CAS:528:DC%2BD38XjtVKnsbY%3DNeumann, G., Massonneau, A., Langlade, N., Dinkelaker, B., Hengeler, C., Römheld, V., Martinoia, E., Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.) (2000) Ann Bot, 85, pp. 909-919. , COI: 1:CAS:528:DC%2BD3cXjs12hu7o%3DNieuwenhuis, R., te Grotenhuis, M., Pelzer, B., Influence.ME: tools for detecting influential data in mixed effects models (2012) R J, 4, pp. 38-47Nishi, A.H., Vasconcellos-Neto, J., Romero, G.Q., The role of multiple partners in a digestive mutualism with a protocarnivorous plant (2013) Ann Bot, 111, pp. 143-150. , PID: 23131297, COI: 1:CAS:528:DC%2BC38XhvFShsrvPNorth, G.B., Nobel, P.S., Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica (1992) New Phytol, 120, pp. 9-19Oburger, E., Kirk, G.J.D., Wenzel, W.W., Puschenreiter, M., Jones, D.L., Interactive effects of organic acids in the rhizosphere (2009) Soil Biol Biochem, 41, pp. 449-457. , COI: 1:CAS:528:DC%2BD1MXit1Omtr8%3DOlde Venterink, H., Does phosphorus limitation promote species-rich plant communities? (2011) Plant Soil, 345, pp. 1-9. , COI: 1:CAS:528:DC%2BC3MXptFymtbg%3DOlsen, S., Cole, C.V., Watanabe, F.S., Dean, L.A., Estimation of available phosphorus in soils by extraction with sodium bicarbonate (1954) USDA Circular, (939), pp. 1-19Palomo, L., Claassen, N., Jones, D.L., Differential mobilization of P in the maize rhizosphere by citric acid and potassium citrate (2006) Soil Biol Biochem, 38, pp. 683-692. , COI: 1:CAS:528:DC%2BD28XivVaqsbs%3DPearse, S.J., Veneklaas, E.J., Cawthray, G.R., Bolland, M.D.A., Lambers, H., Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status (2006) Plant Soil, 288, pp. 127-139. , COI: 1:CAS:528:DC%2BD28XhtFaksL7FPereira, C.G., Almenara, D.P., Winter, C.E., Fritsch, P.W., Lambers, H., Oliveira, R.S., Underground leaves of Philcoxia trap and digest nematodes (2012) Proc Natl Acad Sci USA, 109, pp. 1154-1158. , PID: 22232687, COI: 1:CAS:528:DC%2BC38XislWksrk%3DPeterson, R.L., Farquhar, M.L., Root hairs: specialized tubular cells extending root surfaces (1996) Bot Rev, 62, pp. 1-40Playsted, C.W.S., Johnston, M.E., Ramage, C.M., Edwards, D.G., Cawthray, G.R., Lambers, H., Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae) (2006) New Phytol, 170, pp. 491-500. , PID: 16626471, COI: 1:CAS:528:DC%2BD28XlsVensL4%3D(2012) R: a language and environment for statistical computingRaghothama, K.G., Phosphate acquisition (1999) Annu Rev Plant Physiol Plant Mol Biol, 50, pp. 665-693. , PID: 15012223, COI: 1:CAS:528:DyaK1MXkt1yktrs%3DRoelofs, R.F.R., Rengel, Z., Cawthray, G.R., Dixon, K.W., Lambers, H., Exudation of carboxylates in Australian Proteaceae: chemical composition (2001) Plant Cell Environ, 24, pp. 891-903. , COI: 1:CAS:528:DC%2BD3MXntVKgtr4%3DShane, M.W., de Vos, M., de Roock, S., Cawthray, G.R., Lambers, H., Effects of external phosphorus supply on internal phosphorus concentration and the initiation, growth and exudation of cluster roots in Hakea prostrata R (2003) Br. Plant Soil, 248, pp. 209-219. , COI: 1:CAS:528:DC%2BD3sXhtFCqs7w%3DShane, M.W., de Vos, M., de Roock, S., Lambers, H., Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system (2003) Plant Cell Environ, 26, pp. 265-273. , COI: 1:CAS:528:DC%2BD3sXhslOgur8%3DShane, M.W., Dixon, K.W., Lambers, H., The occurrence of dauciform roots amongst western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae) (2005) New Phytol, 165, pp. 887-898. , PID: 15720700, COI: 1:CAS:528:DC%2BD2MXisFGjtbw%3DShane, M.W., Cawthray, G.R., Cramer, M.D., Kuo, J., Lambers, H., Specialized “dauciform” roots of Cyperaceae are structurally distinct, but functionally analogous with “cluster” roots (2006) Plant Cell Environ, 29, pp. 1989-1999. , PID: 16930324, COI: 1:CAS:528:DC%2BD28Xht1aktLnMShane, M.W., McCully, M.E., Canny, M.J., Pate, J.S., Lambers, H., Development and persistence of sandsheaths of Lyginia barbata (Restionaceae): relation to root structural development and longevity (2011) Ann Bot, 108, pp. 1307-1322. , PID: 21969258Sharpley, A.N., Kleinman, P.J.A., Weld, J.L., Environmental soil phosphorus indices (2008) Soil sampling and methods of analysis, pp. 141-159. , Carter MR, Gregorich EG, (eds), Taylor & Francis, Boca RatonShishkova, S., Rost, T.L., Dubrovsky, J.G., Determinate root growth and meristem maintenance in angiosperms (2008) Ann Bot, 101, pp. 319-340. , PID: 17954472, COI: 1:CAS:528:DC%2BD1cXjsl2jt7w%3DSkene, K.R., Cluster roots: some ecological considerations (1998) J Ecol, 86, pp. 1060-1064Smith, R.J., Hopper, S.D., Shane, M.W., Sand-binding roots in Haemodoraceae: global survey and morphology in a phylogenetic context (2011) Plant Soil, 348, pp. 453-470. , COI: 1:CAS:528:DC%2BC3MXht1Gnt73F(2007) STATISTICA (data analysis software system)Turner, B.L., Condron, L.M., Pedogenesis, nutrient dynamics, and ecosystem development: the legacy of T.W. Walker and J.K. Syers (2013) Plant Soil, 367, pp. 1-10. , COI: 1:CAS:528:DC%2BC3sXnvVOitb4%3DUllah, M.H., Jabbar, A., Khan, M.A., The influence of soil pH and texture on the adsorption of phosphorus by soils (1983) Pakistan J Agric Res, 4, pp. 41-46Viani, R.A.G., Rodrigues, R.R., Dawson, T.E., Oliveira, R.S., Savanna soil fertility limits growth but not survival of tropical forest tree seedlings (2011) Plant Soil, 349 (12), pp. 341-353. , COI: 1:CAS:528:DC%2BC3MXhsFKntb%2FPViani, R.A.G., Rodrigues, R.R., Dawson, T.E., Lambers, H., Oliveira, R.S., Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and Seasonally Dry forest species (2014) Perspect Plant Ecol Evol Syst, 16, pp. 64-74Walker, T.W., Syers, J.K., The fate of phosphorus during pedogenesis (1976) Geoderma, 15, pp. 1-19. , COI: 1:CAS:528:DyaE28Xht1Cltro%3DWatt, M., Evans, J.R., Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration (1999) Plant Physiol, 120, pp. 705-716. , PID: 10398705, COI: 1:CAS:528:DyaK1MXks1amtL0%3DWitkowski, E.T.F., Mitchell, D.T., Variations in soil phosphorus in the fynbos biome, South Africa (1987) J Ecol, 75, pp. 1159-1171Zheng, S.J., Ma, J.F., Matsumoto, H., High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips (1998) Plant Physiol, 117, pp. 745-75
    corecore