10 research outputs found

    Overlapping Community Detection in Networks: the State of the Art and Comparative Study

    Full text link
    This paper reviews the state of the art in overlapping community detection algorithms, quality measures, and benchmarks. A thorough comparison of different algorithms (a total of fourteen) is provided. In addition to community level evaluation, we propose a framework for evaluating algorithms' ability to detect overlapping nodes, which helps to assess over-detection and under-detection. After considering community level detection performance measured by Normalized Mutual Information, the Omega index, and node level detection performance measured by F-score, we reached the following conclusions. For low overlapping density networks, SLPA, OSLOM, Game and COPRA offer better performance than the other tested algorithms. For networks with high overlapping density and high overlapping diversity, both SLPA and Game provide relatively stable performance. However, test results also suggest that the detection in such networks is still not yet fully resolved. A common feature observed by various algorithms in real-world networks is the relatively small fraction of overlapping nodes (typically less than 30%), each of which belongs to only 2 or 3 communities.Comment: This paper (final version) is accepted in 2012. ACM Computing Surveys, vol. 45, no. 4, 2013 (In press) Contact: [email protected]

    Comparative gustatory responses in four species of gerbilline rodents

    Full text link
    Integrated taste responses to chemical stimulation of the tongue were recorded from the intact chorda tympani nerve in four species of gerbils ( Meriones libycus, M. shawi, M. unguiculatus and Psammomys obesus ).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47116/1/359_2004_Article_BF00618177.pd

    Comparison of methods for the detection of node group membership in bipartite networks

    No full text
    Most real-world networks considered in the literature have a modular structure. Analysis of these real-world networks often are performed under the assumption that there is only one type of node. However, social and biochemical systems are often bipartite networks, meaning that there are two exclusive sets of nodes, and that edges run exclusively between nodes belonging to different sets. Here we address the issue of module detection in bipartite networks by comparing the performance of two classes of group identification methods – modularity maximization and clique percolation – on an ensemble of modular random bipartite networks. We find that the modularity maximization methods are able to reliably detect the modular bipartite structure, and that, under some conditions, the simulated annealing method outperforms the spectral decomposition method. We also find that the clique percolation methods are not capable of reliably detecting the modular bipartite structure of the bipartite model networks considered

    Finding Modules in Networks with Non-modular Regions

    Get PDF
    Abstract. Most network clustering methods share the assumption that the network can be completely decomposed into modules, that is, every node belongs to (usually exactly one) module. Forcing this constraint can lead to misidentification of modules where none exist, while the true modules are drowned out in the noise, as has been observed e. g. for protein interaction networks. We thus propose a clustering model where networks contain both a modular region consisting of nodes that can be partitioned into modules, and a transition region containing nodes that lie between or outside modules. We propose two scores based on spectral properties to determine how well a network fits this model. We then evaluate three (partially adapted) clustering algorithms from the literature on random networks that fit our model, based on the scores and comparison to the ground truth. This allows to pinpoint the types of networks for which the different algorithms perform well.
    corecore