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Abstract. Most network clustering methods share the assumption that
the network can be completely decomposed into modules, that is, every
node belongs to (usually exactly one) module. Forcing this constraint
can lead to misidentification of modules where none exist, while the true
modules are drowned out in the noise, as has been observed e. g. for
protein interaction networks. We thus propose a clustering model where
networks contain both a modular region consisting of nodes that can
be partitioned into modules, and a transition region containing nodes
that lie between or outside modules. We propose two scores based on
spectral properties to determine how well a network fits this model. We
then evaluate three (partially adapted) clustering algorithms from the
literature on random networks that fit our model, based on the scores
and comparison to the ground truth. This allows to pinpoint the types of
networks for which the different algorithms perform well.

1 Introduction

A common way of analyzing networks is to partition them into clusters (or
modules, communities) where similar or interacting nodes are grouped together.
This is known as Graph Clustering. Such a grouping can help identifying the
underlying structure of the network and extract insights from it. For example,
modules in a protein–protein interaction (PPI) network can correspond to protein
complexes (see, e.g. [9, 27]). Accordingly, many clustering methods have been
developed, varying in their definition of the optimal clustering and in the approach
taken to compute it [17]. However, in most of these methods, the partition must
be a full partition, meaning every node must belong to exactly one module. This
constraint both limits the classes of networks that can be clustered, and the
insights that can be gained from them.

In this work, we propose a more flexible model, where networks have two
parts: a modular region, which can be fully partitioned into individual modules,
and a transition region, containing nodes that cannot be assigned to any module.
We call these networks “not completely clusterable” (NCC networks). Consider
for example the PPI network mentioned above. It is well-known that there are
? Supported by project NANOPOLY (PITN-GA-2009–238700).
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proteins that are involved in more than one protein complex [10]. Additionally,
not every protein takes part in a complex, meaning that many proteins should
not be assigned to any cluster [24]. By forcing each node into a cluster, we
could fail to single out these proteins and regions and could introduce errors and
meaningless clusters.

Previous work. In recent years, there has been interest in methods that challenge
one part of the “full partition” assumption: Methods to find overlapping clusters,
or perform fuzzy clustering on the network, allow each node in the network
to belong to more than one module. Overlapping Clusters approaches, such as
those based on clique percolation [14], variants of modularity [13, 28] or other
concepts [22], identify modules that can share nodes. In fuzzy graph clustering,
each node receives a probability of being assigned to each module and the modules
can then be determined by thresholding the probabilities [19, 25]. Fewer methods
exist, to our knowledge, that further weaken the assumptions above: methods
like SCAN [26] and the one described by Feng et al. [6] define three types of
nodes: nodes that belong to a single module, nodes that can belong to more than
one module (hubs), and nodes that belong to no module at all (outliers). This is
close to the framework that we present in this paper; however, we assume here
that the nodes that do not belong in modules (either hubs or outliers, as termed
by the other methods) need not necessarily comprise a small and negligible part
of the network.

The MSM (Markov State Model) algorithm was proposed by some of us [20]
to directly address the problem of identifying modules in NCC networks. It uses
the concept of metastability and tries to identify metastable sets, which are then
equated with modules.

Our Contributions. We discuss NCC networks exhibiting the properties defined
above: (1) presence of a transition region, (2) presence of modules. In Section 2, we
propose a simple characterization of such networks, partial modularity. Intuitively,
the structures of the modular region of our networks are dense, while the transition
region is relatively sparse. We propose and discuss two scores to formalize these
notions, and demonstrate their behavior on simple networks.

The next natural question is, given that a network has a high partial modu-
larity, how can we identify its modules? In Section 3, we first present a score for
the quality of a clustering resulting from an algorithm by comparing it with the
clustering dictated by some ground truth. We use this scoring function to com-
pare the performance of state-of-the-art module finding methods on benchmark
networks. Two of these algorithms are adaptations of existing popular algorithms,
and the third, MSM, is designed for NCC networks.

2 Scoring Partial Modularity

To formalize the notion of an NCC network, we want a quantitative score for
a network that evaluates the degree to which it contains modules. The natural
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candidate for this is Newman’s modularity [12], designed to measure the strength
of a full partition of a network into modules: dense connections within modules,
sparse connections between the modules. However, this score has a quality that
makes it not suitable for NCC networks: Networks that are tree and tree-like
have a high modularity [2]. This means that sparse networks without any dense
subgraphs have a high modularity, despite having no dense modules.

Since Newman’s modularity is not adequate, we search in a different direction.
It has been known (see, e.g. [11, 23]) that the number of eigenvalues of the
transition matrix of a network that are close to 1 are linked to the number
of modules in the network, and that the size of the eigenvalue gap could then
indicate the difference between modules and the rest of the network. We take
this idea further by looking at the gap of a different transition matrix: that of
an embedded Markov chain of the continuous Markov process defined by Sarich
et al. [20], where the continuous random walk is generated by a custom generator
L such that the process stays for extended periods of time in dense regions of the
network.The advantage is a better correspondence between eigenvalues close to 1
and dense modules, and a clearer gap. We therefore consider as a network score
the size of the largest gap of this matrix P = exp(αL), where α is the lag time
defined in [20], which acts as a granularity parameter. Let λu be the eigenvalue
of L that lies above the gap, and λl the eigenvalue below the gap. Then we define
the gap score as

Qγ := exp(αλu)− exp(αλl). (1)

We first note that sparse networks do not have a high gap score. For example,
we tested several road networks.1 These networks have a very low average
clustering coefficient (∼ 0.01) and density (∼ 0.0002). While their Newman
modularity [12] is > 0.95, the gap score is < 0.002, considerably lower and better
reflecting the absence of modules.

The gap score has several drawbacks. First, there is not one “true” gap in
the spectrum, just as there is not one “true” clustering of the network. Different
gaps induce different network partitions, and the choice of largest gap can be
arbitrary. Second, there can be networks that contain modules, but do not have
a clear gap. This can occur, e.g. when the density of the modules is close to that
of the transition region. We will demonstrate this in Section 3.

To try and overcome these problems, we use the concept of metastability to
define “good” NCC networks. In [20] we introduced the following definition of a
metastable partition (see also [3]):

R := max
y/∈ M

Ey(τ(M))� min
i=1,...,m

Ei(τ(Mi)) =: W, (2)

Here, Ey(τ(M)) is the expected entry time of the process into an arbitrary
module, if started in some node y ∈ T in the transition region T = V \ M.
Likewise Ei(τ(Mi)) denotes the expected entry time into a module Mj with
j 6= i if started from Mi. In other words, the return time R the random walk
1 Downloaded from http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm
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Fig. 1. Metastability and gap scores for random networks with transition region 1000
nodes and 2 modules.

needs to enter one of the modules, if in the transition region, is small compared
to its typical waiting time W between transitions from one module to another.
Based on this, we define the metastability score as

Qm := 1−R/W. (3)

This score, unlike the gap score above, explicitly takes the transition region into
account, therefore might be better suited for NCC networks. The main drawback
is that this is not a global score, but rather a score for single partition. We
would have liked to continue, analogously to Newman modularity [12], by then
finding the partition that minimizes R/W , and assigning the network its score.
Unfortunately, this will not be useful, since every full partition (T = ∅) will set
R = 0 and the score to 1. However, as the experiments below show, it is still
indicative of the presence of modules and can be used to compare NCC networks.

Experiments. We performed a set of simple experiments to test the gap and
metastability scores.

Figure 1 demonstrates the behavior of the metastability score on networks
with a transition region of 1000 nodes (random Erdős–Rényi (ER) graph with
density 0.05) and two modules (random graphs with given density and size).
To create the network, we first generated the transition region and modules
separately, and then for each module randomly identified a vertex from the
module and a vertex from the transition region.

In Figure 1(a) the modules have size 100 each, and they are random graphs
with density 0.03 to 1. The metastability score was computed for the planted
ground truth partition. As the density of modules increases, the metastability score
increases also, as the denser modules become more metastable. The transition
region does not change, therefore R is the same and only W changes. The gap
score increases as well with the module density, except in the cases where the
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density is low (< 0.18): The 3rd eigenvalue, corresponding to the transition region,
is farther and farther from the 2nd eigenvalue as the density of the modules
grows further from the transition region density. The errors are a result of the
gap not being clear enough when the module density is close to that of the
transition region, being identified between the 1st and 2nd eigenvalues. The
same cannot be said when the density is constant but the module size changes:
The set of networks whose scores are displayed in Figure 1(b) have modules of
changing sizes, from 55 to 400, that are complete graphs. Again we see that the
metastability increases with the module size, since the larger modules are more
metastable. All scores are high since even the small modules, being large complete
graphs, are already metastable. The gap score shows the opposite trend: The gap
between the 2nd and 3rd eigenvalues decreases as the module size increases and
the module size becomes closer to the transition region size. This demonstrates
that the gap score does not always agree with our intuition of a modular network,
and underscores the need for a better modularity score.

3 Algorithms

We select three clustering algorithms from literature, which we partially adapt
for our setting. We choose standard parameters for all algorithms.

SCAN. The SCAN algorithm [26] clusters vertices together based on neighbor-
hood similarity and reachability. It can identify vertices as hubs or outliers; we
interpret both as the transition region. SCAN requires a user-defined parameter
µ that determines the minimum size of a module. This we set to 10, 1% of the
network size of most of the NCC networks we use for evaluation.

Markov Clustering. The idea of the MCL (Markov Clustering) algorithm [5] is to
simulate random walks on the network and identify modules as regions where the
random walker stays for a prolonged time. MCL always returns a full partition.
It has been demonstrated (e. g. [21]) that MCL tends to produce imbalanced
clusterings, consisting of a few large clusters and many small clusters of size
two or three and singletons. Usually viewed as a shortcoming of the algorithm,
we now interpret this tendency to our advantage: We introduce a parameter µ
similar to SCAN to set a minimum size for a module. All modules with less than
µ nodes are assigned to the transition region.

Markov State Model. The MSM (Markov State Model) algorithm [20] first tries
to identify the modular region as the region where a random walker spends the
most time. The rest is classified as transition region, and the modular region is
clustered with a simple heuristic.

Ground-Truth-Based Evaluation. We evaluate the algorithms by comparing their
output to the known clustering using the adjusted Rand index [16, 18], which
measures how well two partitions match. We propose three versions of the
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score: ρMT to measure how well the modular region and transition region are
distinguished, ρM to measure the quality of the clustering within the modular
region, and ρc as a combined score.

3.1 Experiments on Random Networks

We now test the algorithms on random NCC networks, constructed as follows:
Each node belongs either to exactly one of the modules, or to the transition
region. We use a similar random graph model as in Section 2, with each module
and the transition region being a random ER graph. In addition, each module
and the transition region are connected by adding a random spanning tree. Then,
from the transition region and from each module a node is chosen at random,
and these nodes are connected by a random spanning tree to ensure that the
whole graph is connected. Finally, each possible edge between a vertex from a
module and a vertex from the transition region is added with a small probability.

This class has the following parameters: Network size (total number of nodes)
N , number of modules M , total number of nodes in modules Nmtot,
module density pm, transition region density pt and inter-connection
density pi . The inter-connection density is an indicator for the number of
edges between modules and the transition region. We also define the number of
nodes in transition region Nt := N −Nmtot and number of nodes per module
Nm := Nmtot/M .

The standard parameter values are as follows: N = 1000 nodes, M = 5
modules, pm = 0.6 module density, pt = 0.01 transition region density, and pi =
0.01 interconnection density. The minimal module size under these constraints is
then 10 nodes.

Since in practice the running time of the algorithms depends on implementa-
tion, and in every case the running time was < 1 minute, we focus here on the
accuracy of the algorithm as determined by our evaluation measure.

Experiment 1: Varying transition region size. In this experiment, our goal is to
evaluate the behavior of the different algorithms on networks where the transition
region comprises between 0% and 90% of the network. In the case of 0% transition
region, the modular region occupies the entire network, and the problem will
again be that of full partitioning. We hypothesize that the algorithms should
perform better on networks with a small transition region, as they are closer to
the full partition case: SCAN looks for hubs and outliers but those are usually
single nodes, not entire regions; MCL was originally designed for full partitions.
Since MSM does not make assumptions about the size of the transition region,
it is possible that this algorithm performs the same on the networks regardless
of the transition region size.

Indeed, our experiments show that for 80% or less transition region, all
algorithms perform optimally (ρc = 1 for MSM) or close to optimally (ρc > 0.92).
For larger transition regions, all algorithms perform progressively worse.

Figure 2 shows the performance of the algorithms, giving the ρc score averaged
over 5 networks for each transition region size. SCAN and MCL both identify
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Fig. 2. Comparing the ρc score for SCAN, MCL, and MSM on networks with varying
transition region size. All networks were generated with 1000 nodes and 5 modules,
having the default densities.

only two or three modules, assigning the rest to the transition region. SCAN
additionally identifies no hubs or outliers, thus the transition region is a result
of small clusters, just as in the case of MCL. MSM separates the modular
and transition region well (ρMT > 0.95), identifies five modules in the modular
region, but partitions it less than optimally (average ρM = 0.77). MSM begins
to deteriorate a little later than the others, at 89%, but the score decreases fast,
with a score of 0 (all nodes are identified as transition region nodes) from 92%.
Therefore, MSM is clearly the choice in case the transition region is large, but
not too large.

We additionally plot the metastability index of these networks using the
ground truth partition. This score also decreases with the size of the modular
region, since there are less nodes in modules. The gap scores decreases more
quickly, reaching 0.5 when the transition region comprises 75% of the network,
but being close to 1 when the transition region is 10% or less.

Experiment 2: Varying module size. As we increase the size of the transition
region in Experiment 1, the size of a module decreases automatically, since fewer
nodes are now divided into a constant number of 5 modules. Specifically, for a
transition region which covers 80% of the network, the corresponding module
size is 40, and for 90% it is already 20. To test whether the difference in scores
in Experiment 1 is a result of varying the transition region size or of varying the
module size, we run a set of experiment where we directly vary the module size.
The module size is between 20 and 200, there are 5 modules as before, and the
transition region comprises 50% of the network, a value for which all algorithms
in Experiment 1 performed perfectly (ρc = 1). Naturally, to preserve the same
proportion of transition region to modular region while varying the total size of
the modular region, the overall network size has to change as well, varying from
200 to 2000, respectively. All 3 algorithms performed perfectly for all module
sizes: All three ρ scores were 1 or > 0.99. We additionally tested module size
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< 20, but the results were unstable due to the small difference between the true
and the minimal module size: in some cases the modules were detected correctly,
in others, only 9 nodes from a 10-node module were detected, and were assigned
to the transition region, causing low scores. Therefore, while a very small module
size can negatively influence the algorithm, this effect disappears for slightly
larger module sizes, and the low scores of Experiment 1 cannot be fully attributed
to the module size, but must be due to the proportion of the transition region.

In the next set of experiments we keep the proportions between the network
components constant but vary their densities.

Experiment 3: Varying module and transition region densities. In this experiment,
we test combinations of the module density pm and the transition region density
pt. We take as before networks with 1000 nodes and 5 modules, with the transition
region comprising 50% of the network. We additionally set pi = 0.01. For these
parameters and the default densities pt = 0.01, pm = 0.6 all three algorithms
performed optimally in the previous experiments.

We set pm = 0.1, 0.2, . . . , 0.9, 1, and pt = 0.01, 0.06, 0.11, . . . , 0.81. Figure 3
shows a heatmap for each of the algorithms, giving the ρc score for each combi-
nation of transition region density and module density. Intuitively, we expect the
algorithms to do well when the module density is high and the transition density
is low. Indeed, we see that this is the case for all algorithms. SCAN performs the
best, erring only when pt > 0.45. The other two algorithms perform optimally
when pt < 0.06 and pm = 0.8, and performance quickly deteriorates. Looking
more closely at the ρMT and ρM scores, we see that the ρM score is perfect while
ρMT is low: the entire transition region is detected as a single module in all these
cases. The gap score follows this intuition as well, giving a low score only to
networks where the module density is much lower than that of the transition
region.

The poor performance of MSM could perhaps be attributed to the fact that
the algorithm tends to reward (with a high waiting time) those nodes that have
a relatively high degree. Those nodes end up being assigned to modules more
often. As the density of the transition region increases, so does the average degree.
Since we have fixed pi at 0.01, and as the modules are smaller than the transition
region (each module has size 100, compared to 500 for the transition region), the
average degree of nodes in the module is also bounded, and for some values of
pm and pt, the degrees are about the same, and thus MSM cannot tell them
apart as well.

Discussion. Unfortunately, no algorithm comes out the clear leader in every
case. MSM identifies modules even when the transition region is large, but does
not perform so well when the average degree in the transition region is high.
While SCAN performs better than the other algorithms whenever the densities
of the transition region and modules are close, in many cases it too identifies the
transition region as a module.

With regards to the different steps of module identification, we first note that
MSM performs best the task of guessing the correct number of modules. SCAN



9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
module density pm

0.01
0.06
0.11
0.16
0.21
0.26
0.31
0.36
0.41
0.46
0.51
0.56
0.61
0.66
0.71
0.76
0.81

T
R

 d
e
n
si

ty
 p
t

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) Value of ρc for MCL.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
module density pm

0.01
0.06
0.11
0.16
0.21
0.26
0.31
0.36
0.41
0.46
0.51
0.56
0.61
0.66
0.71
0.76
0.81

T
R

 d
e
n
si

ty
 p
t

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b) Value of ρc for SCAN.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
module density pm

0.01
0.06
0.11
0.16
0.21
0.26
0.31
0.36
0.41
0.46
0.51
0.56
0.61
0.66
0.71
0.76
0.81

T
R

 d
e
n
si

ty
 p
t

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) Value of ρc for MSM.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
module density pm

0.01
0.06
0.11
0.16
0.21
0.26
0.31
0.36
0.41
0.46
0.51
0.56
0.61
0.66
0.71
0.76
0.81

T
R

 d
e
n
si

ty
 p
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Gap score

Fig. 3. Plotting the ρc score for the three algorithms for different combinations of pm

and pt. All networks have 1000 nodes and 5 modules with 100 nodes each.

and MCL both under-estimate the module number, identifying modules that
are too small and are therefore assigned to the transition region. No algorithm
over-estimated the number of modules throughout our experiments. On the task
of separating the transition region and the modular region (assessed with the ρMT

measure), the three algorithms had successes and shortcomings: In Experiments 1
and 2 the errors were a result of nodes from the modular region being assigned
to the transition region. In Experiment 3, the error resulted from the transition
region being identified as a single module.

3.2 Experiments on Real-World Networks

We now apply MSM to a real biological network, the well-known FYI network
from [7], in order to test whether the results obtained can provide insight about
biological truth. The PPI network of Saccharomyces cerevisiae was constructed
by integrating the results of several large-scale experiments. The outcome is a
network whose nodes represent proteins and an edge between two nodes exists if
the interaction between the corresponding proteins has been verified by multiple
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(a) CYC2008 protein complexes (b) Modules found by MSM

Fig. 4. Modules in the yeast protein interaction network FYI

experiments. We note that we chose to analyze this particular network despite
the abundance of more modern and complete yeast protein interaction networks,
since it is unweighted and simpler. In fact, the gap score of this network is 0.17,
in contrast to the Newman modularity score [12] of 0.90, suggesting that the
partition with the highest Newman modularity could contain many nodes not
belonging to modules.

We analyze the largest component of the FYI network, containing 778 nodes.
We run the MSM algorithm on this network with the same parameters as for the
benchmark networks above. Figure 4(b) shows the FYI network with the modules
found by MSM in different colors. The black nodes comprise the transition region,
with 556 nodes that do not belong to any modules. We identify 21 modules. The
largest module contains 58 nodes, and the smallest 14 nodes.

It is a common approach in the study of PPI networks to equate network
modules in PPI networks with putative proteins complexes [1, 4]. This approach
can be useful for identifying previously unknown complexes, as well as in assigning
previously unknown function to proteins: if a particular protein can be grouped
together with a set of other proteins, it can be assumed that it has similar
properties or functions to those already known about the protein set.

We therefore compare the modules we identified with the protein complexes
listed in the CYC2008 [15] dataset. Figure 4 shows our modules side-by-side with
the CYC2008 complexes. For this comparison we projected the complexes on
the network, including very small complexes with only two proteins and also
complexes comprised partially of proteins that are not a part of our network.
We find that large complexes such as the 19/22S regulator complex (far left
in the figure) with its 17 protein and the cytoplasmic ribosomal small subunit
complex (23 proteins, far right) are identified. Many smaller complexes such
as the Cytoplasmic exosome complex with 9 proteins are almost completely
identified (MSM finds 8 of the proteins). We observe 38.8% of the nodes do not
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belong to any CYC2008 complex, and thus indeed the gap score could be said
to better capture the modularity of the network than the high score given by
the Newman modularity. Of course, as the network is somewhat outdated, we
cannot use the CYC2008 complexes as a reliable ground truth, but these results
indicate that there is promise to our approach.

4 Outlook

We introduced NCC networks, discussed two scores to evaluate their modularity,
and compared the behavior of several algorithms on the task of detecting modules
in such networks. There are many avenues for further research. We are currently
developing a new network score to overcome the disadvantages of the two scores
we presented. From the perspective of algorithms, there are many other types
of clustering algorithms that might be adapted to NCC networks. One such
interesting class is that of methods to identify the densest subgraph (see e.g. [8]),
where it could be possible to run the algorithm repeatedly until all modules are
identified. The MSM algorithm can be further improved to avoid the pitfalls of
a transition region with a high average degree, as seen in Experiment 3. Finally,
our random graph model is quite simple. It would be interesting to apply the
three algorithms we employed and the scoring function to a richer set of networks,
including more real-world examples.
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