74 research outputs found

    福音書記者マタイの執筆動機およびその自己理解について

    Get PDF
    内容の要約広島大学(Hiroshima University)博士(学術)Doctor of Philosophydoctora

    The Gospel According to Matthew : Motivations and Identity of the Author

    Get PDF
    内容の要約広島大学(Hiroshima University)博士(学術)Doctor of Philosophydoctora

    福音書記者マタイの執筆動機およびその自己理解について

    Get PDF
    内容の要約博士(学術)博士(学術)広島大

    Fibroblasts Show More Potential as Target Cells than Keratinocytes in COL7A1 Gene Therapy of Dystrophic Epidermolysis Bullosa

    Get PDF
    Dystrophic epidermolysis bullosa (DEB) is an inherited blistering skin disorder caused by mutations in the type VII collagen gene (COL7A1). Therapeutic introduction of COL7A1 into skin cells holds significant promise for the treatment of DEB. The purpose of this study was to establish an efficient retroviral transfer method for COL7A1 into DEB epidermal keratinocytes and dermal fibroblasts, and to determine which gene-transferred cells can most efficiently express collagen VII in the skin. We demonstrated that gene transfer using a combination of G protein of vesicular stomatitis virus-pseudotyped retroviral vector and retronectin introduced COL7A1 into keratinocytes and fibroblasts from a DEB patient with the lack of COL7A1 expression. Real-time polymerase chain reaction analysis of the normal human skin demonstrated that the quantity of COL7A1 expression in the epidermis was significantly higher than that in the dermis. Subsequently, we have produced skin grafts with the gene-transferred or untreated DEB keratinocytes and fibroblasts, and have transplanted them into nude rats. Interestingly, the series of skin graft experiments showed that the gene-transferred fibroblasts supplied higher amount of collagen VII to the new dermal–epidermal junction than the gene-transferred keratinocytes. An ultrastructural study revealed that collagen VII from gene-transferred cells formed proper anchoring fibrils. These results suggest that fibroblasts may be a better gene therapy target of DEB treatment than keratinocytes

    Perampanel Inhibits α‐Synuclein Transmission in Parkinson's Disease Models

    Get PDF
    パーキンソン病モデルへのペランパネルの有効性を確認 --パーキンソン病の進行抑制治療への期待--. 京都大学プレスリリース. 2021-04-05.[Background]: The intercellular transmission of pathogenic proteins plays a key role in the clinicopathological progression of neurodegenerative diseases. Previous studies have demonstrated that this uptake and release process is regulated by neuronal activity. [Objective]: The objective of this study was to examine the effect of perampanel, an antiepileptic drug, on α‐synuclein transmission in cultured cells and mouse models of Parkinson's disease.Methods: Mouse primary hippocampal neurons were transduced with α‐synuclein preformed fibrils to examine the effect of perampanel on the development of α‐synuclein pathology and its mechanisms of action. An α‐synuclein preformed fibril‐injected mouse model was used to validate the effect of oral administration of perampanel on the α‐synuclein pathology in vivo. [Results]: Perampanel inhibited the development of α‐synuclein pathology in mouse hippocampal neurons transduced with α‐synuclein preformed fibrils. Interestingly, perampanel blocked the neuronal uptake of α‐synuclein preformed fibrils by inhibiting macropinocytosis in a neuronal activity‐dependent manner. We confirmed that oral administration of perampanel ameliorated the development of α‐synuclein pathology in wild‐type mice inoculated with α‐synuclein preformed fibrils.[Conclusion]: Modulation of neuronal activity could be a promising therapeutic target for Parkinson's disease, and perampanel could be a novel disease‐modifying drug for Parkinson's disease

    Broadly Tunable Sub-terahertz Emission from Internal Branches of the Current-voltage Characteristics of Superconducting Bi2Sr2CaCu2O8+d Single Crystals

    Get PDF
    Continuous, coherent sub-terahertz radiation arises when a dc voltage is applied across a stack of the many intrinsic Josephson junctions in a Bi2Sr2CaCu2O8+d single crystal. The active junctions produce an equal number of I-V characteristic branches. Each branch radiates at a slightly tunable frequency obeying the ac Josephson relation. The overall output is broadly tunable and nearly independent of heating effects and internal cavity frequencies. Amplification by a surrounding external cavity to allow for the development of a useful high-power source is proposed.Comment: 4 pages, 4 figures, accepted for publication in PR

    Comparison of eplerenone and spironolactone for the treatment of primary aldosteronism

    Get PDF
    The mineralocorticoid receptor (MR) is expressed in the kidneys and in adipose tissue, and primary aldosteronism (PA) is associated with metabolic syndrome. This study assessed the effects of MR blockade by eplerenone (EPL) and spironolactone (SPL) on blood pressure (BP) and metabolic factors in patients with PA. Fifty-four patients with PA were treated with one of two MRAs, EPL (25-100 mg daily, n=27) or SPL (12.5-100 mg daily, n=27) for 12 months. Visceral (VAT) and subcutaneous adipose tissue were quantified using CT and FatScan imaging analysis software. Body mass index, homeostasis model assessment-insulin resistance (HOMA-IR), serum creatinine, potassium and lipids, urinary albumin excretion (UAE) and plasma aldosterone concentration (PAC) and plasma renin activity (PRA) were measured before and after treatment. EPL and SPL decreased BP and increased serum potassium levels to similar degrees. PAC and PRA did not differ between the two groups. Although treatment with the MRAs did not change HOMA-IR or serum lipids, they significantly decreased UAE and VAT (P<0.05). These results suggest that EPL and SPL are effective and safe for the treatment of PA. The long-term metabolic and renal effects of these MRAs should be further investigated. © 2016 The Japanese Society of Hypertension. All rights reserved.Embargo Period 6 month

    Multiple noncoding exons 1 of nuclear receptors NR4A family (nerve growth factor-induced clone B, Nur-related factor 1 and neuron-derived orphan receptor 1) and NR5A1 (steroidogenic factor 1) in human cardiovascular and adrenal tissues

    Get PDF
    金沢大学医薬保健研究域医学系Objective: Nuclear receptors are involved in a wide variety of functions, including aldosteronogenesis. Nuclear receptor families NR4A [nerve growth factor-induced clone B (NGFIB), Nur-related factor 1 (NURR1) and neuron-derived orphan receptor 1 (NOR1)] and NR2F [chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TFI), COUP-TFII and NR2F6) activate, whereas NR5A1 [steroidogenic factor 1 (SF1)] represses CYP11B2 (aldosterone synthase) gene transcription. The present study was undertaken to elucidate the mechanism of differential regulation of nuclear receptors between cardiovascular and adrenal tissues. Methods: We collected tissues of artery (n = 9), cardiomyopathy muscle (n = 9), heart muscle (noncardiomyopathy) (n = 6), adrenal gland (n = 9) and aldosterone-producing adenoma (APA) (n = 9). 5′-rapid amplification of cDNA ends (RACE) identified transcription start sites. Multiplex reverse-transcription PCR (RT-PCR) determined use of alternative noncoding exons 1 (ANEs). Results: In adrenocortical H295R cells, angiotensin II, KCl or cAMP, all stimulated CYP11B2 transcription and NR4A was upregulated, whereas NR2F and NR5A1 were downregulated. 5′-RACE and RT-PCR revealed four ANEs of NGFIB (NR4A1), three of NURR1 (NR4A2), two of NOR1 (NR4A3) and two of SF1 (NR5A1) in cardiovascular and adrenal tissues. Quantitative multiplex RT-PCR showed NR4A and NR5A1 differentially employed multiple ANEs in a tissue-specific manner. The use of ANEs of NGFIB and NURR1 was significantly different between APA and artery. Changes in use of ANEs of NGFIB and NOR1 were observed between cardiomyopathy and noncardiomyopathy. The NR4A mRNA levels in artery were high compared with cardiac and adrenal tissues, whereas the NR5A1 mRNA level in adrenal tissues was extremely high compared with cardiovascular tissues. Conclusion: NR4A and NR5A1 genes are complex in terms of alternative promoter use. The use of ANEs may be associated with the pathophysiology of the heart and adrenal gland. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins
    corecore