22 research outputs found

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Activin A is an anticatabolic autocrine cytokine in articular cartilage whose production is controlled by fibroblast growth factor 2 and NF-kappaB.

    No full text
    OBJECTIVE: Proteomic analysis has previously shown that activin A, a member of the transforming growth factor beta family, is produced by human articular cartilage. This study was undertaken to investigate whether activin A affects cartilage matrix catabolism and how its production is regulated. METHODS: The effect of exogenous activin A on interleukin-1-induced aggrecanase-generated neoepitope production was assessed by Western blotting, using medium from human cartilage explants. Levels of activin A production were determined by enzyme-linked immunosorbent assay. For genes of interest, messenger RNA (mRNA) induction in cartilage explants or primary chondrocyte monolayers was assessed by reverse transcriptase-polymerase chain reaction. Activin A activity in cartilage explant medium was measured by incubating it with human dermal fibroblasts and determining the increase in phospho-Smad2 by Western blotting. RESULTS: Activin A (1-10 ng/ml) suppressed aggrecanase-mediated cleavage of aggrecan in human articular cartilage. Activin A mRNA and protein secretion were induced by dissection and culture of human or porcine articular cartilage. This activin A was biologically active. Its production was due to an active cellular process and was enhanced in osteoarthritic (OA) tissue. Activin A production on dissection was reduced by 80% by the fibroblast growth factor (FGF) receptor inhibitor PD173074 and by 70% by the IKK inhibitor BMS345541. CONCLUSION: Activin A is potentially an anticatabolic molecule in articular cartilage. Its expression is induced by wounding in an FGF-2- and NF-kappaB-dependent manner. OA cartilage produced more activin A than did normal cartilage in vitro

    Proteomic analysis of articular cartilage shows increased type II collagen synthesis in osteoarthritis and expression of inhibin betaA (activin A), a regulatory molecule for chondrocytes.

    No full text
    We show that proteomic analysis can be applied to study cartilage pathophysiology. Proteins secreted by articular cartilage were analyzed by two-dimensional SDS-PAGE and mass spectrometry. Cartilage explants were cultured in medium containing [35S]methionine/cysteine to radiolabel newly synthesized proteins. To resolve the cartilage proteins by two-dimensional electrophoresis, it was necessary to remove the proteoglycan aggrecan by precipitation with cetylpyridinium chloride. 50-100 radiolabeled protein spots were detected on two-dimensional gels of human cartilage cultures. Of 170 silver-stained proteins identified, 19 were radiolabeled, representing newly synthesized gene products. Most of these were known cartilage constituents. Several nonradiolabeled cartilage proteins were also detected. The secreted protein pattern of explants from 12 osteoarthritic joints (knee, hip, and shoulder) and 14 nonosteoarthritic adult joints were compared. The synthesis of type II collagen was strongly up-regulated in osteoarthritic cartilage. Normal adult cartilage synthesized little or no type II collagen in contrast to infant and juvenile cartilage. Potential regulatory molecules novel to cartilage were identified; pro-inhibin betaA and processed inhibin betaA (which dimerizes to activin A) were produced by all the osteoarthritic samples and half of the normals. Connective tissue growth factor and cytokine-like protein C17 (previously only identified as an mRNA) were also found. Activin induced the tissue inhibitor for metalloproteinases-1 in human chondrocytes. Its expression was induced in isolated chondrocytes by growth factors or interleukin-1. We conclude that type II collagen synthesis in articular cartilage is down-regulated at skeletal maturity and reactivated in osteoarthritis in attempted repair and that activin A may be an anabolic factor in cartilage
    corecore