1,082 research outputs found

    The Core-Collapse Supernova with "Non-Uniform" Magnetic Fields

    Full text link
    We perform two-dimensional numerical simulations on the core-collapse of a massive star with strong magnetic fields and differential rotations using a numerical code ZEUS-2D. Changing field configurations and laws of differential rotation parametrically, we compute 14 models and investigate effects of these parameters on the dynamics. In our models, we do not solve the neutrino transport and instead employ a phenomenological parametric EOS that takes into account the neutrino emissions. As a result of the calculations, we find that the field configuration plays a significant role in the dynamics of the core if the initial magnetic field is large enough. Models with initially concentrated fields produce more energetic explosions and more prolate shock waves than the uniform field. Quadrapole-like fields produce remarkably collimated and fast jet, which might be important for gamma-ray bursts(GRB). The Lorentz forces exerted in the region where the plasma-beta is less than unity are responsible for these dynamics. The pure toroidal field, on the other hand, does not lead to any explosion or matter ejection. This suggests the presupernova models of Heger et al.(2003), in which toroidal fields are predominant, is disadvantageous for the magnetorotation-induced supernova considered here. Models with initially weak magnetic fields do not lead to explosion or matter ejection, either. In these models magnetic fields play no role as they do not grow on the timescale considered in this paper so that the magnetic pressure could be comparable to the matter pressure. This is because the exponential field growth as expected in MRI is not seen in our models. The magnetic field is amplified mainly by field-compression and field-wrapping in our simulations.Comment: 24 pages, 5 figures, ApJ in press, typos correcte

    Numerical Simulations of Equatorially-Asymmetric Magnetized Supernovae: Formation of Magnetars and Their Kicks

    Full text link
    A series of numerical simulations on magnetorotational core-collapse supernovae are carried out. Dipole-like configurations which are offset northward are assumed for the initially strong magnetic fields together with rapid differential rotations. Aims of our study are to investigate effects of the offset magnetic field on magnetar kicks and on supernova dynamics. Note that we study a regime where the proto-neutron star formed after collapse has a large magnetic field strength approaching that of a ``magnetar'', a highly magnetized slowly rotating neutron star. As a result, equatorially-asymmetric explosions occur with a formation of the bipolar jets. Resultant magnetar's kick velocities are 3001000\sim 300-1000 km s1^{-1}. We find that the acceleration is mainly due to the magnetic pressure while the somewhat weaker magnetic tension works toward the opposite direction, which is due to stronger magnetic field in the northern hemisphere. Noted that observations of magnetar's proper motions are very scarce, our results supply a prediction for future observations. Namely, magnetars possibly have large kick velocities, several hundred km s1^{-1}, as ordinary neutron stars do, and in an extreme case they could have those up to 1000 km s1^{-1}.Comment: 36 pages, 9 figures, accepted by the Astrophysical Journa

    Role of Oxygen Electrons in the Metal-Insulator Transition in the Magnetoresistive Oxide La22x_{2-2x}Sr1+2x_{1+2x}Mn2_2O7_7 Probed by Compton Scattering

    Full text link
    We have studied the [100]-[110] anisotropy of the Compton profile in the bilayer manganite. Quantitative agreement is found between theory and experiment with respect to the anisotropy in the two metallic phases (i.e. the low temperature ferromagnetic and the colossal magnetoresistant phase under a magnetic field of 7 T). Robust signatures of the metal-insulator transition are identified in the momentum density for the paramagnetic phase above the Curie temperature. We interpret our results as providing direct evidence for the transition from the metallic-like to the admixed ionic-covalent bonding accompanying the magnetic transition. The number of electrons involved in this phase transition is estimated from the area enclosed by the Compton profile anisotropy differences. Our study demonstrates the sensitivity of the Compton scattering technique for identifying the number and type of electrons involved in the metal-insulator transition.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Kick velocity induced by magnetic dipole and quadrupole radiation

    Full text link
    We examine the recoil velocity induced by the superposition of the magnetic dipole and quadrupole radiation from a pulsar/magnetar born with rapid rotation. The resultant velocity depends on not the magnitude, but rather the ratio of the two moments and their geometrical configuration. The model does not necessarily lead to high spatial velocity for a magnetar with a strong magnetic field, which is consistent with the recent observational upper bound. The maximum velocity predicted with this model is slightly smaller than that of observed fast-moving pulsars.Comment: 10 pages, 3 color figure

    Bulk Fermi surface and momentum density in heavily doped La2x_{2-x}Srx_xCuO4_4 using high resolution Compton scattering and positron annihilation spectroscopies

    Get PDF
    We have observed the bulk Fermi surface (FS) in an overdoped (xx=0.3) single crystal of La2x_{2-x}Srx_xCuO4_4 by using Compton scattering. A two-dimensional (2D) momentum density reconstruction from measured Compton profiles yields a clear FS signature in the third Brillouin zone along [100]. The quantitative agreement between density functional theory (DFT) calculations and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. In particular the predicted FS topology is found to be in good accord with the corresponding experimental data. We find similar quantitative agreement between the measured 2D angular correlation of positron annihilation radiation (2D-ACAR) spectra and the DFT based computations. However, 2D-ACAR does not give such a clear signature of the FS in the extended momentum space in either the theory or the experiment.Comment: 9 pages, 8 figure

    Jungle Honey Enhances Immune Function and Antitumor Activity

    Get PDF
    Jungle honey (JH) is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal). After seven injections, peritoneal cells (PC) were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2) cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS) producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW) of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261

    Neutrino mean free paths in spin-polarized neutron Fermi liquids

    Full text link
    Neutrino mean free paths in magnetized neutron matter are calculated using the Hartree-Fock approximation with effective Skyrme and Gogny forces in the framework of the Landau Fermi Liquid Theory. It is shown that describing nuclear interaction with Skyrme forces and for magnetic field strengths log10B(G)17log_{10} B(G) \gtrsim 17, the neutrino mean free paths stay almost unchanged at intermediate densities but they largely increase at high densities when they are compared to the field-free case results. However the description with Gogny forces differs from the previous and mean free paths stay almonst unchanged or decrease at densities [12]ρ0[1-2]\rho_0. This different behaviour can be explained due to the combination of common mild variation of the Landau parameters with both types of forces and the values of the nucleon effective mass and induced magnetization of matter under presence of a strong magnetic field as described with the two parametrizations of the nuclear interaction.Comment: 9 pages, 3 figure

    Erosion and Sedimentation During the September 2015 Flooding of the Kinu River, Central Japan

    Get PDF
    Erosional and sedimentary features associated with flooding have been documented in both modern and past cases. However, only a few studies have demonstrated the relationship between these features and the corresponding hydraulic conditions that produced them, making it difficult to evaluate the magnitude of paleo-flooding. This study describes the characteristics associated with inundation depth and flow direction, as well as the erosional and sedimentary features resulting from the disastrous flooding of the Kinu River, central Japan, in September 2015. Water levels rose rapidly due to heavy rainfall that eventually overtopped, and subsequently breached, a levee in Joso City, causing destructive flooding on the surrounding floodplain. Distinctive erosional features are found next to the breached levee, while depositional features, such as a sandy crevasse-splay deposit are found further away from the breach. The deposit can be divided into three units based on sedimentary facies. The vertical and lateral changes of these sedimentary facies may be the result of temporal and spatial changes associated with flow during the single flooding event. These observations and quantitative data provide information that can be used to reveal the paleohydrology of flood deposits in the stratigraphic record, leading to improved mitigation of future flooding disasters
    corecore