46 research outputs found

    Collective Quantisation of a Gravitating Skyrmion

    Full text link
    Collective quantisation of a B=1 gravitating skyrmion is described. The rotational and isorotational modes are quantised in the same manner as the skyrmion without gravity. It is shown in this paper how the static properties of nucleons such as masses, charge densities, magnetic moments are modified by the gravitational interaction.Comment: 10 pages, 9 figures, minor corrections, published versio

    Regular and Black Hole Solutions in the Einstein-Skyrme Theory with Negative Cosmological Constant

    Full text link
    We study spherically symmetric regular and black hole solutions in the Einstein-Skyrme theory with a negative cosmological constant. The Skyrme field configuration depends on the value of the cosmological constant in a similar manner to effectively varying the gravitational constant. We find the maximum value of the cosmological constant above which there exists no solution. The properties of the solutions are discussed in comparison with the asymptotically flat solutions. The stability is investigated in detail by solving the linearly perturbed equation numerically. We show that there exists a critical value of the cosmological constant above which the solution in the branch representing unstable configuration in the asymptotically flat spacetime turns to be linearly stable.Comment: 10 pages, 9 figures, comments and one reference added, to appear in Class.Quant.Gra

    Glueball mass from quantized knot solitons and gauge-invariant gluon mass

    Full text link
    We propose an approach which enables one to obtain simultaneously the glueball mass and the gluon mass in the gauge-invariant way to shed new light on the mass gap problem in Yang-Mills theory. First, we point out that the Faddeev (Skyrme--Faddeev-Niemi) model can be induced through the gauge-invariant vacuum condensate of mass dimension two from SU(2) Yang-Mills theory. Second, we obtain the glueball mass spectrum by performing the collective coordinate quantization of the topological knot soliton in the Faddeev model. Third, we demonstrate that a relationship between the glueball mass and the gluon mass is obtained, since the gauge-invariant gluon mass is also induced from the relevant vacuum condensate. Finally, we determine physical values of two parameters in the Faddeev model and give an estimate of the relevant vacuum condensation in Yang-Mills theory. Our results indicate that the Faddeev model can play the role of a low-energy effective theory of the quantum SU(2) Yang-Mills theory.Comment: 17 pages, 2 figures, 3 tables; a version accepted for publication in J. Phys. A: Math. Gen.; Sect. 2 and sect. 5 (old sect. 4) are modified. Sect. 4, Tables 1 and Table 3 are adde

    Dual Spaces of Resonance In Thick pp-Branes

    Full text link
    In this work we consider qq-form fields in a pp-brane embedded in a D=(p+2)D=(p+2) space-time. The membrane is generated by a domain wall in a Randall-Sundrum-like scenario. We study conditions for localization of zero modes of these fields. The expression agrees and generalizes the one found for the zero, one, two and three-forms in a 33-brane. By a generalization we mean that our expression is valid for any form in an arbitrary dimension with codimension one. We also point out that, even without the dilaton coupling, some form fields are localized in the membrane. The massive modes are considered and the resonances are calculated using a numerical method. We find that different spaces have identical resonance structures, which we call dual spaces of resonances(DSR).Comment: 15 page

    Localizing gravity on Maxwell gauged CP1 model in six dimensions

    Full text link
    We shall consider about a 3-brane embedded in six-dimensional space-time with a negative bulk cosmological constant. The 3-brane is constructed by a topological soliton solution living in two-dimensional axially symmetric transverse subspace. Similar to most previous works of six-dimensional soliton models, our Maxwell gauged CP1 brane model can also achieve to localize gravity around the 3-brane. The CP1 field is described by a scalar doublet and derived from O(3) sigma model by projecting it onto two-dimensional complex space. In that sense, our framework is more effective than other solitonic brane models concerning with gauge theory. We shall also discuss about linear stability analysis for our new model by fluctuating all fields.Comment: 23 pages, 7 figures; references adde

    Decreased expression of haemoglobin beta (HBB) gene in anaplastic thyroid cancer and recovory of its expression inhibits cell growth

    Get PDF
    Anaplastic thyroid cancer (ATC) is one of the most fulminant and foetal diseases in human malignancies. However, the genetic alterations and carcinogenic mechanisms of ATC are still unclear. Recently, we investigated the gene expression profile of 11 anaplastic thyroid cancer cell lines (ACL) and significant decreased expression of haemoglobin beta (HBB) gene in ACL. Haemoglobin beta is located at 11p15.5, where loss of heterozygosity (LOH) was reported in various kinds of cancers, including ATC, and it has been suggested that novel tumour suppressor genes might exist in this region. In order to clarify the meaning of decreased expression of HBB in ATC, the expression status of HBB was investigated with ACL, ATC, papillary thyroid cancer (PTC) and normal human tissues. Haemoglobin beta showed significant decreased expression in ACLs and ATCs; however, in PTC, HBB expressed equal to the normal thyroid gland. In addition, HBB expressed in normal human tissues ubiquitously. To validate the tumour-suppressor function of HBB, cell growth assay was performed. Forced expression of HBB in KTA2 cell, which is a kind of ACL, significantly suppressed KTA2 growth. The mechanism of downregulation of HBB in ATC is still unclear; however, our results suggested the possibility of HBB as a novel tumour-suppressor gene

    A high spatial resolution X-ray and H-alpha study of hot gas in the halos of star-forming disk galaxies. I. Spatial and spectral properties of the diffuse X-ray emission

    Full text link
    We present arcsecond resolution Chandra X-ray and ground-based optical H-alpha imaging of a sample of ten edge-on star-forming disk galaxies (seven starburst and three ``normal'' spiral galaxies), a sample which covers the full range of star-formation intensity found in disk galaxies. We use the unprecedented spatial resolution of the Chandra X-ray observatory to robustly remove point sources, and hence obtain the X-ray properties of the diffuse thermal emission alone. The X-ray observations are combined with comparable-resolution H-alpha and R-band imaging, and presented as a mini-atlas of images on a common spatial and surface brightness scale. The vertical distribution of the halo-region X-ray surface brightness is best described as an exponential, with the observed scale heights lying in the range H_eff = 2 -- 4 kpc. The ACIS X-ray spectra of extra-planar emission from all these galaxies can be fit with a common two-temperature spectral model with an enhanced alpha-to-iron element ratio. This is consistent with the origin of the X-ray emitting gas being either metal-enriched merged SN ejecta or shock-heated ambient halo or disk material with moderate levels of metal depletion onto dust. The thermal X-ray emission observed in the halos of the starburst galaxies is either this pre-existing halo medium, which has been swept-up and shock heated by the starburst-driven wind, or wind material compressed near the walls of the outflow by reverse shocks within the wind. In either case the X-ray emission provides us with a powerful probe of the properties of gaseous halos around star-forming disk galaxies.Comment: To appear in April 2004 edition of ApJS. For high resolution version, see http://proteus.pha.jhu.edu/~dks/ Accepted version, now has nuclear and total diffuse emission fluxes and luminosities, a few other minor change

    Specific Loss of Histone H3 Lysine 9 Trimethylation and HP1γ/Cohesin Binding at D4Z4 Repeats Is Associated with Facioscapulohumeral Dystrophy (FSHD)

    Get PDF
    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed “phenotypic” FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4–specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)–treated cells. We found that SUV39H1–mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1γ and cohesin are co-recruited to D4Z4 in an H3K9me3–dependent and cell type–specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type–specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1γ/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis

    Uncovering Enhancer Functions Using the α-Globin Locus

    Get PDF
    Over the last three decades, studies of the α- and β-globin genes clusters have led to elucidation of the general principles of mammalian gene regulation, such as RNA stability, termination of transcription, and, more importantly, the identification of remote regulatory elements. More recently, detailed studies of α-globin regulation, using both mouse and human loci, allowed the dissection of the sequential order in which transcription factors are recruited to the locus during lineage specification. These studies demonstrated the importance of the remote regulatory elements in the recruitment of RNA polymerase II (PolII) together with their role in the generation of intrachromosomal loops within the locus and the removal of polycomb complexes during differentiation. The multiple roles attributed to remote regulatory elements that have emerged from these studies will be discussed
    corecore