7,123 research outputs found
Interspecific differences in the larval performance of Pieris butterflies (Lepidoptera: Pieridae) are associated with differences in the glucosinolate profiles of host plants
The tremendous diversity of plants and herbivores has arisen from a coevolutionary relationship characterized by plant defense and herbivore counter adaptation. Pierid butterfly species feed on Brassicales plants that produce glucosinolates as a chemical deterrent against herbivory. In turn, the larvae of pierids have nitrile specifier proteins (NSPs) that are expressed in their gut and disarm glucosinolates. Pierid butterflies are known to have diversified in response to glucosinolate diversification in Brassicales. Therefore, each pierid species is expected to have a spectrum of host plants characterized by specific glucosinolate profiles. In this study, we tested whether the larval performance of different Pieris species, a genus in Pieridae (Lepidoptera: Pieridae), was associated with plant defense traits of putative host plants. We conducted feeding assays using larvae of three Pieris species and 10 species of the Brassicaceae family possessing different leaf physical traits and glucosinolate profile measurements. The larvae of Pieris rapae responded differently in the feeding assays compared with the other two Pieris species. This difference was associated with differences in glucosinolate profiles but not with variations in physical traits of the host plants. This result suggests that individual Pieris species are adapted to a subset of glucosinolate profiles within the Brassicaceae. Our results support the idea that the host ranges of Pieris species depend on larval responses to glucosinolate diversification in the host species, supporting the hypothesis of coevolution between butterflies and host plants mediated by the chemical arms race
A Local One-Zone Model of MHD Turbulence in Dwarf Nova Disks
The evolution of the magnetorotational instability (MRI) during the
transition from outburst to quiescence in a dwarf nova disk is investigated
using three-dimensional MHD simulations. The shearing box approximation is
adopted for the analysis, so that the efficiency of angular momentum transport
is studied in a small local patch of the disk: this is usually referred as to a
one-zone model. To take account of the low ionization fraction of the disk, the
induction equation includes both ohmic dissipation and the Hall effect. We
induce a transition from outburst to quiescence by an instantaneous decrease of
the temperature. The evolution of the MRI during the transition is found to be
very sensitive to the temperature of the quiescent disk. As long as the
temperature is higher than a critical value of about 2000 K, MHD turbulence and
angular momentum transport is sustained by the MRI. However, MHD turbulence
dies away within an orbital time if the temperature falls below this critical
value. In this case, the stress drops off by more than 2 orders of magnitude,
and is dominated by the Reynolds stress associated with the remnant motions
from the outburst. The critical temperature depends slightly on the distance
from the central star and the local density of the disk.Comment: 20 pages, 2 tables, 6 figures, accepted for publication in Ap
Hydrodynamic Simulations of Counterrotating Accretion Disks
Hydrodynamic simulations have been used to study accretion disks consisting
of counterrotating components with an intervening shear layer(s).
Configurations of this type can arise from the accretion of newly supplied
counterrotating matter onto an existing corotating disk. The grid-dependent
numerical viscosity of our hydro code is used to simulate the influence of a
turbulent viscosity of the disk. Firstly, we consider the case where the gas
well above the disk midplane rotates with angular rate +\Omega(r) and that well
below has the same properties but rotates with rate -\Omega(r). We find that
there is angular momentum annihilation in a narrow equatorial boundary layer in
which matter accretes supersonically with a velocity which approaches the
free-fall velocity and the average accretion speed of the disk can be
enormously larger than that for a conventional \alpha-disk rotating in one
direction. Secondly, we consider the case of a corotating accretion disk for
rr_t. In this case we observed, that
matter from the annihilation layer lost its stability and propagated inward
pushing matter of inner regions of the disk to accrete. Thirdly, we
investigated the case where counterrotating matter inflowing from large radial
distances encounters an existing corotating disk. Friction between the
inflowing matter and the existing disk is found to lead to fast boundary layer
accretion along the disk surfaces and to enhanced accretion in the main disk.
These models are pertinent to the formation of counterrotating disks in
galaxies and possibly in Active Galactic Nuclei and in X-ray pulsars in binary
systems.Comment: LaTeX, 18 pages, to appear in Ap
Magnetotransport Study of the Canted Antiferromagnetic Phase in Bilayer Quantum Hall State
Magnetotransport properties are investigated in the bilayer quantum Hall
state at the total filling factor . We measured the activation energy
elaborately as a function of the total electron density and the density
difference between the two layers. Our experimental data demonstrate clearly
the emergence of the canted antiferromagnetic (CAF) phase between the
ferromagnetic phase and the spin-singlet phase. The stability of the CAF phase
is discussed by the comparison between experimental results and theoretical
calculations using a Hartree-Fock approximation and an exact diagonalization
study. The data reveal also an intrinsic structure of the CAF phase divided
into two regions according to the dominancy between the intralayer and
interlayer correlations.Comment: 6 pages, 7 figure
A Component-based Software Development and Execution Framework for CAx Applications
Digitalization of the manufacturing process and technologies is regarded as the key to increased competitive ability. The MZ-Platform infrastructure is a component-based software development framework, designed for supporting enterprises to enhance digitalized technologies using software tools and CAx components in a self-innovative way. In the paper we show the algorithm, system architecture, and a CAx application example on MZ-Platform. We also propose a new parametric data structure based on MZ-Platform
- …